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Big data–driven personal protective equipment stockpiling
framework under a universal healthcare system for disease
control and prevention in the COVID-19 era

Kevin Sheng-Kai Ma DDS, MSc and Alice Shin-Yi Tsai MD, MS, DrPH
Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland

To the Editor—We appreciate the letter by Wang et al1 regarding
the issue of facemasks in protecting against the coronavirus disease
2019 (COVID-19) outbreak. In this letter, we report the distribu-
tion of surgical masks on a real-time basis and recognition of the
mask holders in need. We hope that by introducing this system
to increase the distribution channels, the burden on healthcare
providers can be reduced and that the user-friendly interface for
PPE providers and consumers may help expedite PPE distribution
in a more efficient manner.

Big data analytics has improved healthcare by analyzing
electronic medical records, sociodemographic information, and
environmental factors.2 Moreover, its tracking roles in emerging
infectious diseases, including the coronavirus pandemic, have been
discussed.3 In countries with single-payer universal healthcare sys-
tems (UHSs), claimed data of payers could be an abundant source
for analytics. On the other hand, compulsory social distancing,
coupled with mass masking, has been widely adopted as a strategy
for nonspecific symptoms in early-stage COVID-19.4 We propose

that analytics based on proper concatenation of databases may
prevent supply shortages of personal protective equipment (PPE).

Taking Taiwan as an example, cloud-computing–based health-
care databases within the UHS has alleviated the integration
between primary care providers and hospitals and has reduced
the cost of tracking. Applying the same logistics to PPE allocation
would allow PPE providers to manage the distribution of surgical
masks on a real-time basis and to recognize the mask holders
according to insurance or passport number.5 With the help of data
analysis, combining artificial intelligence and cloud technology,
public health policy making could be practicable. Thus, when it
comes to the implementation cost of epidemic prevention policies,
Taiwan authorities adopt low-cost, stringent-level strategies com-
pared with other high-income countries, but they still achieved
epidemic control in the early outbreak.6

After the 2003 severe acute respiratory syndrome (SARS) out-
break, the Taiwan CDC (TCDC) started transferring registered
real-time infectious disease data to this established monitoring sys-
tem, in which PPE stockpiling platform was used. Therefore, prior
to the official recognition of COVID-19 outbreak,3 PPE databases
were subsequently concatenated by UHS to manage resource alloca-
tion and logistics when several cases were identified. Establishment
of this application programming interface for mask-selling phar-
macies under UHS required data transfers as well as managerial
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issues including governance and ownership, for which interdepart-
mental communication was efficient within the UHS. Specifically,
the tracking system expanded the healthcare informatics system
that pharmacists were familiar with, and its user-friendly interfaces
for PPE providers and consumers helped expedite distribution
processes.5 The UHS and the TCDC have also promoted the system
to increase the distribution channels, withinwhich government offices
may also allot masks to lessen the burden on healthcare providers.

Because masks alone are not effective without combining infec-
tion-control measures,7 we recommend this integrative platform
for the maintenance of more PPE stockpiles, including critical
infection-control equipment to reduce iatrogenic SARS-CoV-2
exposure.
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Impact of early carbapenemase notification on infection control
management and antimicrobial stewardship
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To the Editor—The worldwide spreading of carbapenemase-
producing Enterobacterales (CPE) is a matter of concern due to
the limited therapeutic options available.1 In severe cases of infec-
tion, an early carbapenemase detection and notification is crucially
important for the adequacy of antimicrobial treatment, for the
management of patients, and to establish infection control practi-
ces.2 Some microbiology laboratories have used blue-carba, a col-
orimetric test, because it is fast, easy to read, and inexpensive.3

However, the impact for the infection control practices and the
turnaround time of its use on previous carbapenemase detection
among Enterobacterales has been poorly evaluated.

We aimed to determine the turnaround time until CPE notifi-
cation in comparison with the time to report a final microbiology
result (bacterial identification plus antimicrobial susceptibility
testing). We also aimed to evaluate the importance of this notifi-
cation for the infection control measures and antimicrobial resis-
tance predictability.

During a follow-up survey from August 2017 to August 2018,
we performed an observational study in patients at a tertiary-care
hospital from Porto Alegre, Brazil. Enterobacterales isolates

recovered from any clinical specimen were submitted to blue-carba
test (BCT) for phenotypic carbapenemase detection.3 Isolates were
identified using Vitek 2 (bioMérieux, Marcy l’Etoile, France) or
MALDI-TOF/MS (Bruker Daltonics, Germany), if necessary.
Antimicrobial susceptibility testing was determined by disc diffu-
sion (Oxoid, for amikacin, gentamycin, meropenem; Etest
(bioMérieux, Marc l´Étoile, France) for fosfomycin (when isolates
were recovered from urine) and brothmicrodilution for polymyxin
B and tigecycline. Carbapenemase characterization was conducted
using phenotypic tests using specific inhibitors, as described
elsewhere.4

The work flow required the microbiology laboratory to notify
the infection control staff or clinician of a positive BCT result
for early carbapenemase notification after bacterial isolation from
each clinical specimen analyzed.

During the period of the study, 300 CPE notifications were
made, including 155 distinct patients. The average time was
1.19 days for CPE notification versus 2.38 days for the final report
(Fig. 1). KPC-producing Klebsiella pneumoniae was the most
prevalent agent (291 of 300, 97%) and no other gene carba-
penemase than blaKPC-2 was detected during this period.
Antimicrobial resistance was observed as follows: meropenem
97.7%, gentamicin 77.6%, fosfomycin 31.6%, polymyxin
B 29.0%, amikacin 7.3% and tigecycline 5%.

Of the 155 patients enrolled in this survey, in 73 patients
(47.1%) an adjustment of antimicrobial therapy was promoted
after the early BCT notification. These adjustments were due to
the inclusion of polymyxin B (65.7%, 48 patients), amikacin
(28.8%, 21 patients), or fosfomycin (5.5%, 4 patients). For 25
patients (16.1%), no change in initial therapy was verified. In these
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