DOI: 10.1111/ina.12958

REVIEW

WILEY

Effectiveness of interventions to reduce household air pollution from solid biomass fuels and improve maternal and child health outcomes in low- and middle-income countries: A systematic review and meta-analysis

Katherine E. Woolley¹ | Emma Dickinson-Craig¹ | Heidi L. Lawson² | Jameela Sheikh² | Rosie Day³ | Francis D. Pope³ | Sheila M. Greenfield¹ | Suzanne E. Bartington¹ | David Warburton⁴ | Semira Manaseki-Holland¹ | Malcolm J. Price^{1,5} | David J. Moore¹ | G. Neil Thomas¹

¹Institute of Applied Health Research, University of Birmingham, Birmingham, UK

²College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

³School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

⁴Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA

⁵NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK

Correspondence

Suzanne E. Bartington, Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, UK. Email: S.Bartington@bham.ac.uk

Funding information

KEW holds a University of Birmingham Global Challenges Scholarship. The funders had no involvement in the conduct of the research and/or preparation of the article conduct.

Abstract

Interventions to reduce household air pollution (HAP) are key to reducing associated morbidity and mortality in low- and middle- income countries (LMICs); especially among pregnant women and young children. This systematic review aims to determine the effectiveness of interventions aimed to reduce HAP exposure associated with domestic solid biomass fuel combustion, compared to usual cooking practices, for improving health outcomes in pregnant women and children under five in LMIC settings. A systematic review and meta-analysis was undertaken with searches undertaken in MEDLINE, EMBASE, CENTRAL, GIM, ClinicalTrials.gov, and Greenfile in August 2020. Inclusion criteria were experimental, non-experimental, or quasi-experimental studies investigating the impact of interventions to reduce HAP exposure and improve associated health outcomes among pregnant women or children under 5 years. Study selection, data extraction, and quality assessment using the Effective Public Health Practice Project tool were undertaken independently by two reviewers. Seventeen out of 7293 retrieved articles (seven pregnancy, nine child health outcome; 13 studies) met the inclusion criteria. These assessed improved cookstoves (ICS; n = 10 studies), ethanol stoves (n = 1 study), and Liquefied Petroleum Gas (LPG; n = 2 studies) stoves interventions. Meta-analysis showed no significant effect of ICS interventions compared to traditional cooking for risk of preterm birth (n = 2 studies), small for gestational age (n = 2 studies), and incidence of acute respiratory infections (n = 6 studies). Although an observed increase in mean birthweight was observed, this was not statistically significant (n = 4). However, ICS interventions reduced the incidence of childhood burns (n = 3; observations = 41 723; Rate Ratio: 0.66 [95% CI: 0.45-0.96]; l^2 : 46.7%) and risk of low birth weight (LBW; n = 4; observations = 3456; Odds Ratio:

Woolley and Dickinson-Craig Joint first author.

Systematic review registration: Protocol identifier: 10.1186/s13643-021-01590-z. PROSPERO ID: CRD42020164998.

© 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

0.73 [95% CI: 0.61–0.87]; l^2 : 21.1%). Although few studies reported health outcomes, the data indicate that ICS interventions were associated with reduced risk of childhood burns and LBW. The data highlight the need for the development and implementation of robust, well-reported and monitored, community-driven intervention trials with longer-term participant follow-up.

KEYWORDS

child health outcomes, environmental health, health improvement, indoor air pollution, intervention effectiveness, pregnancy outcomes

1 | INTRODUCTION

WILEY

Complex interventions, such as those to reduce household air pollution (HAP) which include several multiple interacting components, are challenging to evaluate due to practical and methodological difficulties. However, evaluation is necessary to assess important health consequences and improve population health.¹ HAP is produced from the burning of biomass (wood, dung charcoal, and crop residue), coal and kerosene for cooking, heating, and lighting in typically poorly ventilated settings, generating hazardous levels of carbon monoxide (CO), particulate matter (PM), nitrogen dioxide (NO₂), and sulfur dioxide (SO₂).²

Interventions to reduce HAP exposure include introduction of cleaner fuels (eg, Liquefied petroleum gas (LPG), ethanol, electricity, solar stoves, biogas, natural gas)³ which could reduce levels to below the World Health Organization's Indoor Air Quality (WHO-IAQ) guidelines if fully adopted. At a clean energy transition stage fuel "stacking," or incomplete uptake may occur, whereby users continue to use traditional cooking methods and fuels alongside cleaner sources; thereby reducing efficacy of the intervention.⁴ Populations in low- and middle-income countries (LMICs) often face multiple barriers to adoption of HAP interventions, including accessibility, affordability, lack of sustainable infrastructure and interventions not meeting cultural and social preferences. This is particularly the case with long-term interventions that require significant transition and behavioral adaptation. WHO Indoor Air Quality Guidelines (2014) focus particular attention upon reducing pollutants as much as possible-by clean fuel transition-given the need to reduce PM2.5 exposure to low levels to generate health benefits⁵; recommendations which have been reiterated in the updated global air quality guidelines (2021).⁶ However, the guidelines also provide evidence-based recommendations for policies to be enacted within the clean fuel transition period (including introduction of Improved Cookstoves), recognizing that intermediate steps will be necessary in many lowincome settings. These include measures such as improved cookstoves (ICS)⁷; improved biomass fuels (eg, briquettes, biomass pellets)⁸; and behavioral changes (eg, ventilation, outdoor cooking)⁷ to address the global burden of arising disease from HAP.⁹ However, these often fail to achieve substantive reduction in HAP levels sufficient to prevent health harms and improvements may not meet WHO-IAQ Interim Targets.⁷

Interventions are needed to reduce the health, socioeconomic, and environmental consequences associated with HAP, which disproportionately affect pregnant women and young children.¹⁰ In pregnancy, causally associated health outcomes with HAPs¹¹ include gestational hypertension, intrauterine growth retardation (IUGR) preterm birth, stillbirth, birthweight, and perinatal mortality.¹² In children aged under 5 years investigated health outcomes include acute lower respiratory infection (ALRI), asthma, otitis media, impaired neurodevelopment, and mortality in early life.^{13,14}

Previous systematic reviews have focused on the effect of interventions upon HAP concentrations or exposure levels¹⁵ or have selected specific interventions (eg, ICS)^{7,16} or health outcomes,^{17,18} without assessing the benefit of intervention options upon maternal and child health. Systematic reviews on uptake and sustained use of both ICS and adoption of cleaner fuels¹⁹ have been undertaken, highlighting contextual and compositional factors that should be considered when planning and implementing such interventions. This systematic review aims to provide an evidence synthesis for the overall benefit of HAP interventions, compared to usual practice from experimental and non-experimental studies, on maternal and child health outcomes in pregnant women and children under five in LMIC settings. Sustained uptake of these HAP interventions is also discussed.

2 | METHODS

A detailed protocol for the systematic review and meta-analysis has been published previously²⁰ and registered on PROSPERO (ID: CRD42020164998).²¹ The focus of this review is any domestic intervention aiming to reduce HAP exposure associated with cooking, heating, and lighting and the associated effect upon pregnancy and under five child health outcomes, among those living in LMICs.

2.1 | Search strategy and selection

In August 2020, MEDLINE (in process and 1947–present); EMBASE (1947–present); CENTRAL; The Global Index Medicus (GIM; WHO, 2020a⁸⁰); ClinicalTrials.gov and GreenFILE²² were searched using index and free text terms for "Population" AND ("Intervention" OR

("Household Air Pollution" AND "LMICs"; MEDLINE search strategy in Appendix 1)). Reference lists of included studies, and relevant systematic reviews identified by searching Epistemonikos,²³ were viewed to capture any additional studies. The WHO International Clinical Trials Registry Platform (ICTRP)²⁴ was searched later in September 2020 due to earlier closure of the portal for COVID-19 research only. Article screening (by title and abstract) and full paper selection were undertaken independently by two reviewers (HL, JS, KEW, or EDC), with differences in article selection discussed and resolved as a group.

2.2 | Eligibility criteria

Study eligibility was determined using Population-Intervention-Comparator-Outcome-Study design (PICOS) criteria (Table 1). The study population was defined as pregnant women and/or children under 5 years, residing in LMICs, as defined by the OECD Development Assistance Committee (DAC) list²⁵ at the time the studies were completed, who are exposed to HAP produced from cooking, heating, and lighting with solid biomass fuels. Interventions (ie, cleaner fuels, structural (eg, improved cookstoves, chimneys), behavioral) had to target solid biomass cooking, heating, or lighting to reduce HAP, which was compared to control groups (ie, usual practices) or an alternative intervention (ie, any other intervention within the inclusion criteria).

Studies had to report at least one health outcome related to the pregnancy/perinatal period (within 1 week of birth) (eg, IUGR, birthweight, low birth weight, preterm birth, pre-eclampsia, blood pressure, gestational diabetes, maternal mortality, perinatal/infant mortality, stillbirth, and miscarriage) or in children under 5 years (eg, upper and lower respiratory tract infections, pneumonia, asthma, respiratory distress syndrome, otitis media, impaired neurodevelopment, mortality, and burns), previously associated with HAP. Eligible study designs were randomized control trials (RCTs), nonrandomized control trials, and quasi-experimental or natural experimental studies (including before-after studies and interrupted time-series studies, if pre- and post-intervention health outcomes were recorded).

TABLE 1 Study eligibility PICOS criteria

There was no exclusion by publication date, language, or type of publication, with exclusion only occurring when all five areas of the PICOS inclusion criteria were not met.

2.3 | Data extraction

Data extraction of included studies was undertaken independently by two reviewers (HL, JS, or KEW) and any disagreements were discussed and if necessary adjudicated (by EDC). Data extraction used an adapted (to study design) Cochrane Public Health Group data extraction form, collecting information on study characteristics (ie, population, geographical setting, inclusion, and exclusion criteria), health outcomes (ie, type of outcome, definitions, scales, and time points measured), and interventions details (ie, type of intervention and comparators, uptake and adoption, air pollution measurement details). The authors were contacted if further clarification or information was required.

2.4 | Risk of bias

Quality and risk of bias was assessed using the Effective Public Health Practice Project²⁶; independently by two reviewers (HL, JS, or KEW), adjudicated by EDC; at a study level based on the primary outcome. The quality and bias assessment was reported for six components (selection bias, study design, confounders, blinding, data collection methods, withdrawals, and dropouts). It was accepted that blinding and random allocation of participants may not have been fully possible, given the nature of the interventions and settings.

2.5 | Evidence synthesis

Narrative synthesis was undertaken for each unique populationintervention-outcome triad and for intervention compliance, defined as the uptake and sustained use of the intervention. Meta-analyses were undertaken in STATA version 16.1.²⁷ A random effects model was applied due to the environmental and

Populations	Pregnant women Children under five
Interventions	Household air pollution intervention
Comparators	Standard practice or alternative intervention
Outcomes	 Pregnancy outcomes: IUGR, birthweight, preterm birth, pre- eclampsia, gestational diabetes, maternal mortality, perinatal/ infant mortality, stillbirth, and miscarriage Child health outcomes: upper and lower respiratory tract infections, pneumonia, asthma, respiratory distress syndrome, otitis media, impaired neurodevelopment, mortality, and burns
Study designs	Randomized control trials Non-randomized control trials Quasi-experimental or natural experiments

Wiley

methodological variation between studies contributing to each analysis; for example, differences between specific types of cookstove (intervention) or biomass composition (comparator). The Sidik and Jonkman method was used due to the low number of studies included in each meta-analysis as it reflects uncertainty in the estimation of between-study heterogeneity through widening the confidence interval.²⁸⁻³⁰ For comparisons, continuous data were reported as mean differences and standard deviations, dichotomous data as odds ratios (95% confidence interval (CI)) and rate ratios (95% Cl). In each meta-analysis, variability in effect estimates between studies beyond that expected by chance alone was quantified with the l^2 statistic. The Chi² test for heterogeneity and the between-study variance (Tau²) were also computed. Where l^2 indicated substantial heterogeneity²⁸ further sub-analysis was undertaken by geographic region (eg, Africa, Asia) as defined by the United Nations.³¹ Additionally, an exploratory analysis was undertaken for birthweight and LBW, due to the discovery of a variation in timing of deployment of the intervention within pregnancy. Funnel plots and a test for small study effects were not undertaken due to the small number of studies in each meta-analysis.^{28,32}

3 | RESULTS

The searches identified 10 367 records (before duplicate removal; Figure 1), with 17 articles (reporting on 13 studies) being eligible for inclusion after screening and full paper review; six studies reported pregnancy outcomes³³⁻³⁹ and nine studies reported child health outcomes.⁴⁰⁻⁴⁸ Three studies were reported across two articles each RESPIRE, ^{38,47} Nepal step-wedge ICS and LPG intervention, ^{37,48} and ethanol cookstove^{34,35} (Appendix 2).

3.1 | Study characteristics

Of the six studies (seven articles) investigating a range of pregnancy outcomes (Table 2), all were RCTs and stove-based interventions (Figure 2; eg, ICS = 3, ethanol stove = 1, and LPG and ICS = 2). Study quality was found to be strong (n = 3), moderate (n = 1), and weak (n = 2) with studies being classified as weak where a lack of detail prevented a confident assessment of quality.

All of the nine (nine articles) child health outcome studies, comprising eight RCTs^{40,42-48} and one interrupted time series,⁴¹ investigated ICS interventions; with one study having both an ICS and an improved fuel (briquettes).⁴⁴ Study quality was found to be strong (n = 6), moderate (n = 2), and weak (n = 1), respectively, with moderate or weak study quality designated due to the study design and outcome measurements.

Household air pollution measurements were reported in 10 studies, with a reduction in pollutant levels observed in four ICS interventions,^{38,40,44,46,47} and two ICS/LPG interventions^{37,49}; none of which were below the WHO-IAQ guidelines.

3.2 | Pregnancy outcomes

3.2.1 | ICS interventions vs traditional cooking

Birthweight

Four studies undertaken in India,³⁶ Nepal,³⁷ Ghana,³⁹ and Guatemala,³⁸ compared ICS to traditional stove cooking, with variation in deployment date of the ICS ranging from before conception to final stage of pregnancy (Table 2). Timing of birthweight measurement varied between studies, recorded within 24 h³⁹ (n = 1), 48 h³⁸ (n = 1), and 72 h³⁷ (n = 1) of birth, or by maternal self-report.³⁶ The meta-analysis showed a higher absolute mean birthweight of 25.94 g (95% CI: -16.18-68.05) (Figure 3) in ICS compared to traditional stove cooking, but the wide confidence interval for birthweight meant the association was insignificant. An exploratory sub-analysis restricted to those studies (n = 3) in which the ICS was deployed within the third trimester of pregnancy only, gave a similar result (25.99 g; 95% CI: -24.01-78.99; Appendix 3).

Low birth weight

Three of the four studies which investigated birthweight also reported prevalence of low birth weight (LBW; Nepal,³⁷ Ghana,³⁹ and Guatemala³⁸), in addition to a study investigating only LBW in rural Bangladesh³³; which deployed the ICS intervention within the first trimester and recorded birthweight within 72 h of delivery. All studies except for one³³ (which provided no relevant definition), categorized LBW as a birthweight of <2500 g. Only one study (Bangladesh)³³ observed a decrease in the odds of LBW associated with an ICS intervention compared to traditional cooking (Table 3). In Nepal,³⁷ there was no observed change in odds of LBW with the timing of intervention deployment by stage of pregnancy, after adjusting for confounders. In the meta-analysis, there was an observed decrease in the odds of LBW in the intervention compared to control groups (OR: 0.73; 95% CI: 0.61-0.87; Figure 4). Two additional sub-analyses were undertaken (Appendices 4 and 5), showing similar results when the intervention was deployed in the first trimester (OR: 0.73; 95% CI: 0.54-0.97) in the intervention compared to the control group. However, when the ICS was deployed in the third trimester there was no evidence of an effect in the odds of LBW between the intervention and control arms (OR: 1.04; 95% CI: 0.73-1.47).

Preterm birth and Small for gestational age

Only two studies, in Nepal³⁷ and Ghana,³⁹ investigated the effect of ICS on risk of preterm birth and small for gestational age (SGA), with one³⁷ defining preterm birth as delivery before 37 weeks; in the other, no definitions could be ascertained.³⁹ In the metaanalysis (Figures 5 and 6), no clear evidence of a decrease in the odds of preterm birth (PTB) or SGA with the intervention was observed (OR: 0.89; 95% CI: 0.67–1.17; OR: 1.02; 95% CI: 0.86–1.20, respectively). FIGURE 1 PRISMA flow diagram of search result and study selection. [†]Two studies were identified from alternative sources. Hanna et al., 2016³⁶ were identified from a previous systematic review Thakur et al., 2018¹⁶ and Wylie et al., 2017³⁹ investigation into available publish literature from the identification of the GRAPHs study through the ClinicalTrials.gov search. [‡]Incorrect population is those studies that did not meet the population inclusion criteria, which included those studies where children above the age of five were also investigated by data from children under five could not be extracted separately. [§]Two child health outcome studies could not be included in the meta-analysis due to lack of data provided. Adane et al. (2020) ⁴⁰ were identified as pre-print by the search, with subsequent publication during manuscript preparation

3.2.2 | Ethanol fuel interventions

A large trial was undertaken in Nigeria which investigated the effect of an ethanol cookstove intervention deployed at 18 weeks gestation compared to firewood, reporting multiple pregnancy outcomes³⁵ and blood pressure during pregnancy.³⁴ Some health improvements were identified (Table 3), including an increase in birthweight (Adjusted mean difference: 197 g; 95% CI: 25-368) and an increase in gestational age at delivery (Adjusted mean difference: 1.6 weeks; 95% CI: 0.04-3.2). No significant exposure-response relationships were observed. Additionally, no significant decrease in diastolic blood pressure during pregnancy was observed in the ethanol group compared to the firewood group. However, all controls were given information regarding the health harms of cooking smoke and details on how to reduce their exposure (eg, cooking in a well-ventilated room or cooking outside), reducing the ability to observe the true effect of the full intervention. In addition, the study was powered to detect an effect size difference between control and intervention groups for birthweight and preterm birth only, with many of the outcomes

being underpowered, along with a low number of users in the firewood group.

3.2.3 | LPG stove interventions

Two LPG stove interventions were investigated, one comparing LPG stoves deployed at 28 weeks gestation to traditional cooking in rural Ghana³⁹ and the second comparing LPG stoves to ICS both deployed prior to conception in rural Nepal.³⁷ Both studies showed no statistical significant improvement in pregnancy outcomes (birthweight, LBW, PTB, gestational age, SGA, and stillbirth); however, in Nepal, there was only a 50% compliance with the intervention measure. Blood pressure was also investigated in a subsample of the Ghana Randomized Air Pollution and Health Study (GRAPHs),⁴⁹ showing no statistically significant reduction in blood pressure in the intervention (combined LPG stoves or ICS) group compared to the traditional cooking group. However, a significant exposure-response relationship with CO was observed. Due to the differences in control group characteristics and variation in the timing of intervention

6 of 32 WILEY TABLE 2 Methodological, outcome, and situational characteristics of included studies

Publication	Study type	Intervention and time of delivery	Control	Population	Eligibility criteria
Pregnancy outcomes					
Ahmed et al., ³³ (2015) ^c	C-RCT N = 1267	ICS - "\$100 cookstove" n = 628	Traditional cookstove (biomass fuels) n = 639	Pregnant women	8–12 weeks gestation at time of enrolment
Alexander et al. (2017) ³⁴	RCT N = 324	Ethanol Clean Cookstove and information on the dangers of smoke	Standard practice: firewood or kerosene and given information on the dangers of smoke exposure and how	Pregnant women attending antennal clinics who cook on Kerosene or firewood	 Have a child between 2-8 months Cooks in an enclosed cookhouse Mother is not HIV positive or a smoker
Alexander et al. (2018) ³⁵		and how to reduce exposure. n = 162	Data were extracted for the firewood only control group. n = 162		 Does not live with a smoker Does not cook for a living Has not previously has a high-risk pregnancy
Hanna et al. (2016) ³⁶	RCT N = 2575	Three phases. Gram Vikas improved stove received by 1/3 is phase one and	Traditional cooking (firewood, crop residue, or cow dung). The last 1/3 received Gram Vikas improved stove at the end.	Participants residing in households within study area	Not stated
Katz et al. (2020) ³⁷	Step-wedge RCT Nepal Cookstove Intervention Project Trial 1: <i>N</i> = 3706 (2397 live births separated by gestation in pregnancy ICS was deployed) Trial 2: <i>N</i> = 1851	another 1/3 in phase two Trial 1: ICS Environfit International (Proportion of pregnancy exposure to ICS, <33, 33-65, 66- 99, 100%) Trial 2: LPG stove n = 279	 Trial 1: Traditional biomass cooking (i.e. ICS was given after birth). Trial 2: LPG stove vs. ICS n = 270 	Married women age 15–30	Household has one married women (15-30 years), a child under 36 months and does not already use LPG stove or electricity

WOOLLEY ET AL.

Health outcomes and definitions	Follow-up period	Household air pollution measurements	Compliance	Geographical characteristics	Study Quality ^d
LBW—measured at home or a healthcare facility within 72 h of delivery	8–12 weeks gestation until 42-day post-partum	None taken	Not reported	Shahjadpur sub-district, Bangladesh	Weak
Blood pressure (SBP and DBP) taken at 20 weeks, 26 weeks, 30 weeks, 34 weeks, 38 weeks. An average of three reading recorded after being seated for 10 min and on the left arm.	18–38 weeks gestation	Reported in Alexander 2018	Not reported	9 selected villages in Ibadan Nigeria, peri- urban setting	Strong
Birthweight (g) Preterm (delivery before 37 weeks gestation) Stillborn (death after 24 weeks gestation) Miscarriage (Fetal loss before 24 weeks) Gestational age (weeks gestation at birth) Birth length (cm) Head Circumference (cm) Respiratory rate (breaths/min) Neonatal death Birth defects Perinatal mortality (Stillbirth or neonatal death)	18 weeks gestation to 6 weeks post-pregnancy	72 h personal PM _{2.5} Rainy season— Intervention = $n = 114$, Mean (SD) 61 (74) µg/m ³ Control = $n = 116$ Mean (SD) = $66 (82) µg/m3$ Dry Season – Intervention = $n = 99$, Mean (SD) = $118 (166) µg/m3$ Control = $n = 98$ Mean (SD) = $102 (102) µg/m3$	Not reported		
Birthweight, stillbirth or miscarriage, and infant mortality. No definition provided, but was self-reported	Stove placement and follow-up occurred between 2006–2010 (4 years)	Personal Exhaled CO (Micro Medical CO monitor) Intervention difference from baseline: -0.23 ppm (SD: 0.196) Control Mean: 7.128 ppm	Self-reported stove use. 60% of participants reported correct usage.	Orissa States, Rural India where 40% live below the poverty line	Weak
Birthweight (g) taken within 72 h of birth LBW (>2500 g) Gestational Age (weeks) Preterm (before 37 weeks) SGA (sex and gestational age- specific birthweights) fell below the 10th percentile of the inter- growth population distribution using the upper bounds of weekly published data	Women recruited before conception and followed up until birth. Birth included colored over a 2-year period for trial 1 and 1-year period for trial 2.	Stove area measurements (Av. 21.7 h) Trial 1: $PM_{2.5}$: TB = Mean: 1380 µg/m ³ (95% Cl: 1336, 1425) ICS = Mean 936 µg/m ³ (95% Cl: 895, 978) CO: TB = Mean 11.0 ppm (95% Cl: 10.6, 11.4), ICS = Mean 6.7 ppm (95% Cl: 6.4, 7.1) Trial 2: $PM_{2.5}$: ICS = 885 µg/m ³ (95% Cl: 810, 959) LPG = 442 µg/m ³ (95% Cl: 405, 482) CO: ICS = Mean 5.5 ppm (95% Cl: 5.0, 6.0) LPG = Mean 1.7 ppm (95% Cl: 1.5, 1.9)	Weekly visit to encourage and check stove use. Trial 1 : 90% reported use of alternative stove at least once per week Trial 2 : Alternative stove use was at 50%	Village development communities in rural southern low land Nepal, relying on subsistence farming	Strong

B of 32 | WILEY-TABLE 2 (Continued)

Publication	Study type	Intervention and time of delivery	Control	Population	Eligibility criteria
Thompson et al. (2011) ³⁸	RCT-RESPIRE N = 266	Chimney stove n = 134	Open wood fires (firewood) <i>n</i> = 120	Pregnant women	Households with a pregnant women or a child <4 months of age who cook on open wood fires
Wylie ³⁹ (2017) ^c	RCT—GRAPHs ^a Trial	Biolite improved cookstove (n = 527) and LPG cookstove (n = 361)	Three-stone stove (firewood) <i>n</i> = 526	Pregnant women at 28 weeks gestation	Primary cook at less than 28 weeks gestation, cooking on traditional fire and are a non-smoker
Under five child outcom	nes				
Adane et al., (2021) ⁴⁰	C-RCT N = 5508 Pre-enrolment cross-sectional ARI prevalence is reported elsewhere ⁷⁵	Injera baking stove n = 2750	Traditional biomass stove n = 2758	Children under 4 years from biomass cooking low-income households	Exclusive use of traditional biomass stove in an enclosed cooking area.
Harris et al. (2011) ⁴¹	Interrupted time series N = 4026	ONIL stove	Traditional cooking (firewood)	Whole population attending a basic healthcare clinic in the village of Santa Avelina	-
Hartinger et al. (2016) ⁴²	C-RCT N = 534	OPTIMA- improved stove n = 267	Traditional stoves or open fires (solid fuels) n = 267	Children under than age of 36 months residing in traditional biomass cooking households	Use of solid fuels, no public sewage connection, and no intention to move during the study period

9 of 32

Health outcomes and definitions	Follow-up period	Household air pollution measurements	Compliance	Geographical characteristics	Study Quality ^d
Birthweight measured within 48 h of delivery. Low birthweight defined at <2500 g	ICS was received by participants in the latter stages of pregnancy	48 h personal CO. Open fire n = 54 mean = 4.1 ppm (SD: 3.2) (GM 3.2 (SD: 1.9)) Chimney n = 49 mean 2.5 ppm (SD: 2.5) GM (1.8 (2.1))	Weekly fieldworker home visits to check function and arrange if repair needed. Observations not reported	San Marcos, a rural and high- altitude part of Guatemala.	Moderate
Birthweight (g) measured within 24 h of delivery. Preterm birth and SGA details obtained	Stove deployed at 28 weeks gestation and women followed to delivery	Reported in Quinn et al., 2017 ⁴⁹ 72 h personal CO. Mean ICS: 1.43 ppm Mean Control: 0.63 ppm	Weekly stove use compliance by fieldworkers. Observations not reported	Rural Ghana	Strong
Trained nurse diagnoses ARI using the IMCI pneumonia algorithm. Burns were reported	Over 1 year from receiving intervention, taking measurements at three months intervals	Reported in Adane et al.,(2021) ⁷⁶ One cooking hour area PM _{2.5} Control: Mean 805 µg/m ³ (95% Cl: 794–817). Intervention: Mean 465 µg/m ³ (95% Cl: 458–472)	Self-report, direct field observation, and unannounced visits. Observations not reported	A low-income rural community in Ethiopia	Strong
Nurse diagnosed. Acute upper respiratory infection (AURI) = Non-productive cough, nasal congestion, and sore throat, with or without low-grade fever ALRI = Non-productive cough, nasal congestion, and sore throat, with fever>38°C	4 years, over which time the ICS was installed in 90% of homes	None taken	Not reported	Quiche region of Guatemala	Weak
Symptoms observed by trained fieldworkers ARI = cough and/or difficulty breathing. ALRI = cough or difficulty breathing, with a raised respiratory rate (>50 per min in children aged 6-11 months and >40 per min in children aged >12 months) on two consecutive measurements.	Followed up for 12 months, counting weekly ARI events	Reported in Hartinger et al., (2013) ⁷⁷ 48 h personal and kitchen are $PM_{2.5}$ and CO. Kitchen PMControl n = 34 mean: 189 µg/m ³ (95% CI: 116-261) Kitchen PM Interventions n = 30 mean: 148 µg/m ³ (95% CI: 88-208) Personal PM Control $n = 40$, Mean: 129 µg/m ³ (95% CI: 82-176) Personal PM intervention n = 37 Mean: 104 µg/m ³ (95% CI: 64-144) Kitchen CO control n = 44 mean: 5.8 ppm (95% CI: 33.3-8.2) Kitchen CO intervention n = 39 mean: 4.7 ppm (95% CI: 2.8-6.6) Personal CO control n = 45 mean:1.4 ppm (95% CI: 0.8-2) Personal CO intervention n = 39 mean:1.5 ppm (95% CI: 1-2)	Spot checking and monthly self- reported stove use. 90% of mother reported using the ICS.	High evaluation, rural small farming community in Peru	Strong

(Continues)

TABLE 2 (Continued)

WILEY

10 of 32

Publication	Study type	Intervention and time of delivery	Control	Population	Eligibility criteria
Kirby et al., (2019) ⁴³	C-RCT N = 2174	ICS n = 1073	Traditional biomass cooking (charcoal, wood, crop residue) n = 1101	Children under the age of five	Agreed to receive intervention and a child under 4 years
Litchfield (2018) ⁴⁴	RCT N = 226	ICS and briquettes n = 115	Traditional three-stone stove (wood) <i>n</i> = 136	Woman and children in wood cooking households	Cooking solely on biomass, in an enclosed cookhouse with a child between 2 and 8 months
Mortimer et al. (2017) ⁴⁵	C-RCT CAPS N = 10750	ICS (Philips HD4012LS biomass fan stove) n = 5400	Traditional cooking on open fires <i>n</i> = 5350	Children under the age of 4.5 years	Children under 4.5 years, continuous recruitment throughout the study as children become eligible, up until 6 months before the study end.
Schilmann et al. (2015) ⁴⁶	RCT N = 668	Patsari stove n = 338	Open wood fire or partial use of intervention n = 330	Children under 4 years old residing in fuel wood households	No specific inclusion criteria mentioned

WOOLLEY ET AL.

11 of 32 WILEY

Study Quality^d

Strong

Strong

Strong

Health outcomes and definitions	Follow-up period	Household air pollution measurements	Compliance	Geographical characteristics
Mother reporting child's symptoms to fieldworkers 7-day ARI: cough accompanied by rapid breathing or difficulty breathing. Current IMCI pneumonia: cough and difficulty breathing, accompanied by chest in drawing and/or rapid breathing ≥40 breaths/min for children ≥12 months or ≥50 breaths/min for children 2-12 months. Current Severe pneumonia (IMCI) ^a cough or difficulty breathing accompanied by severe symptoms (not able to drink, persistent vomiting, convulsions, lethargic/ unconscious, stridor in a calm child, or severe malnutrition). Does not include children <2 months. Burns in previous 2 months	3 follow-up visits at approximately 4- month intervals	Yes-48 h PM _{2.5} measurement every 3 months n = 148 Intervention: Mean: 224 µg/m ³ (median 154 µg/m ³ , IQR: 85-267 µg/m3) Control: Mean: 231 µg/m ³ (median 161 µg/m ³ , IQR: 91-285 µg/m ³)	Self-report and direct observation by trained field enumerators at each field visit. Declining use throughout study period, with 52.5% using intervention every day by the third visit, with stove use being over reported (ref—Thomas et al 2016)	Western rural Rwanda 9 96 administrative sectors containing 3612 villages, with a total population of about 2.5 million persons)
Pneumococcal nasopharyngeal carriage was defined as a proxy for ARI	Followed up over 4 months after intervention	Yes-48 h PM _{2.5} and CO stove located measurements PM _{2.5} Intervention Mean = 659.8 μg/m ³ (SD: 827.7), Control Mean = 573.1 μg/m ³ (SD: 134.3) CO: Not reported	Self-report and fieldworkers checked compliance during weekly fuel drop offs. 41.4% continued to use 3-stone stove	Kombo East District, rural Gambia
Assessed by trained healthcare staff. Non-severe IMCI pneumonia: cough or difficulty breathing and fast breathing (60, 50, or 40 breaths per min or higher in those aged <2 months, 2–12 months, and 1–5 years, respectively). Severe IMCI pneumonia: addition of chest in-drawing, stridor, or any general danger sign (inability to drink or breastfeed, vomiting, convulsions, lethargy, or unconsciousness).	Followed up for every 3 months 2 years or until the end the trial which is ever is sooner	None taken	Self-report and stove use monitors were placed on one of the stoves in a randomly selected 10% sample of intervention households to record temperature fluctuations. Number of cooing event per day; Year 1: Mean:0.51	Sothern Shire river valley (Chikhwawa) and Northern (Karonga) Malawi

Death, burns, and asthma was also recorded as adverse events

reported using intervention Diagnoses by trained nurses. Every month for Two subsamples (n = 113) with Not reported Six rural Lower respiratory infection-fast 10 months a range 500-1000 μg/m³ communities breathing, cough and difficulty Intervention Median:200 µg/ in the highland m³ breathing, Upper respiratory of Michoacan, infection cough, congestion Control median: 300 µg/m³ Mexico Reporting an 80% reduction phlegm, and sore throat

(SD: 0.55)

Year 2: Mean: 0.34 (SD: 0.40). After 2 years, 50%

16000668, 2022, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/ina.12958 by Johns Hopkins University, Wiley Online Library on [12/05/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/term

(Continues)

Moderate

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

TABLE 2 (Continued)

12 of 32

Publication	Study type	Intervention and time of delivery	Control	Population	Eligibility criteria
Smith et al. (2011) ⁴⁷	C-RCT RESPIRE N = 534	Chimney stove n = 269	Open wood fires <i>n</i> = 265	Children under 4 months	Households with a pregnant women or a child <4 months of age that cooked on open wood fires
Tielsch et al. (2016) ⁴⁸	Step-wedge RCT measuring before and after respiratory incidence Nepal Cookstove Intervention Project N = 5254	ICS environfit international	Traditional biomass cooking	Household with a married woman (15–30 years) and a child under the age of 36 months	Household has one married women (15–30 years), a child under 36 months and does not already use LPG stove or electricity

Abbreviations: C-RCT, cluster randomized control trial; GM, geometric mean; ICS, improved cookstove; IMCI, Integrated Management of Childhood Illnesses; n, number randomized to each group; N, number study.

^aQuinn et al., 2017⁴⁹ was a convenience sample from GRAPHs (*N* = 44) reporting blood pressure 3–4 weeks after intervention was deployed. ^bAsante et al., 2019⁷⁸ stated no observed effect on pneumonia in children under five between the intervention and controls as part of the GRAPHS study. No results were reported, therefore not included.

^cThese studies are conference abstract and authors were contacted to provide further details to no avail. Wylie et al. 2017³⁹ and Tielsch et al. 2016⁴⁸ are part of large RCT, supported by other published evidence. Ahmed et al. 2015³³ has not published the "\$100 cookstove" trial, to the best of our knowledge, since the publication of the conference abstract in 2015.

^dThe breakdown of the study quality can be found in Appendix 10.

FIGURE 2 Article characteristics by geographical region, with interventions type for pregnancy outcomes and duration of follow-up from intervention deployed to health outcomes measurement for child health outcomes

deployment between these two studies a meta-analysis was not performed.

3.3 | Child Health outcomes-improved cookstoves

3.3.1 | Acute respiratory infection and acute lower respiratory infection

Of the nine studies reporting ARI and ALRI, in Ethiopia,⁴⁰ Guatemala,^{41,47} Peru,⁴² Rwanda,⁴³ Gambia,⁴⁴ Malawi,⁴⁵ Mexico ,⁴⁶ and Nepal,⁴⁸ one used swabbing to detect pneumococcal nasopharyngeal carriage at a single time point as a proxy for ARI,⁴⁴ three used a non-specific definition^{41,46,48} and five used the WHO Integrated Management of Childhood Illnesses (IMCI) definition of pneumonia and severe pneumonia.^{40,42,43,45,47} ARI and ALRI were assessed by trained nurses (n = 5), a fieldworker (n = 1), maternal reports (n = 1), nasopharyngeal swabs samples (n = 1), and both maternal reports and fieldwork assessment (n = 1). One study⁴⁵ also reported asthma and death as adverse events and another⁴⁸ reported a decrease in persistent cough and wheeze; however, there was no evidence for a reduction in fever, severe ALRI, or ear discharge

Health outcomes and definitions	Follow-up period	Household air pollution measurements	Compliance	Geographical characteristics	Study Quality ^d
Physician-diagnosed ARI, with chest radiography and RSV testing following standard practice. Trained fieldworker diagnosed ARI using WHO IMCI algorithm.	Weekly visits for 14-18 months	Personal 48 h CO every 3 months. 50% reduction Intervention: 1.1 ppm Control: 2.2 ppm.	Weekly fieldworker home visits to check function and arrange if repair needed. Observations not reported.	San Marcos, a rural and high- altitude part of Guatemala.	Strong
ARI: Maternal report of 2 or more consecutive days of fast or difficult breathing accompanied by fever ALRI, cough, wheeze, burns also recorded	Weekly maternal reports over 6 months	HAP measurement taken but no results reported	Weekly visit to encourage and check stove use. Observations not reported.	Rural southern low land Nepal, village development communities based on subsidence farming	Moderate

		ICS		Tradi	tional co	oking	Random	n-Effects	MD (g)		Weight
Study	Ν	Mean	SD	Ν	Mean	SD	Sidik-J	okman	(95% CI)		(%)
Katz et al. 2020	713	2653	431	558	2630	443			23.00 (-25.33,	71.33)	46.65
Thompson et al. 2012	69	2797	422	105	2729	392				190.75)	10.73
Hanna et al. 2016	241	2930	985	400	2964	886			-34.00 (-181.74,	113.74)	7.61
Wylie et al. 2017	488	2920	460	475	2890	490			30.00 (-30.01,	90.01)	35.00
Overall							-		25.94 (-16.18,	68.05)	
Heterogeneity: $\tau^2 = 381$	1.46, I^2	= 19.36%	$/_{0}, H^{2} =$	= 1.24							
Test of $\theta_i = \theta_j$: Q(3) = 1	.12, p =	= 0.77					Favours Control	Favours Interver	ntion		
Test of $\theta = 0$: $z = 1.21$,	p = 0.2	23									
						-2	00 -100 () 100	200		

FIGURE 3 Forest plot for the differences in birthweight (grams) between ICS and traditional cooking. Number of observations = 3049. A random effects model was used. Abbreviations: 95% CI, 95% confidence interval, g, grams; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; MD, mean difference; p, p value; τ^2 , tau-squared; test of $\theta_i = \theta_j$: Q(3), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z, statistic for overall estimate

(actual result not reported). Only one study⁴⁷ observed a significant decrease in fieldworker assessed ARI risk (risk ratio 0.56; 95% CI: 0.32–0.97) and a significant exposure-response relationship (RR: 0.82; 95% CI: 0.70–0.98). Three studies were excluded from the meta-analysis as the articles only reported effect estimates^{46,48} or did not report a rate/count of the number of events⁴⁴; in addition, one study only reported ARI.⁴⁰ In the meta-analysis, ARI (Figure 7)

was observed to decrease in the intervention group (RR: 0.94; 95% CI: 0.88–1.01); however, there was a substantial level of heterogeneity observed (I^2 : 59.4 [p < 0.13]). The level of heterogeneity was also high in the ALRI meta-analysis (Figure 8; I^2 80.4% [p < 0.01]); with overall it being unclear whether there is a decrease in the rate of ALRI in the intervention compared to the control group (RR: 0.75; 95% CI: 0.55–1.03); with the confidence interval including both the

שפורון המיריטווי IABLE 3 וווכוטמפט אנטעא ווכפורוו המיריטווי	results		
Publication	Intervention	Control	Effect estimate
Pregnancy outcomes			·
Ethanol cookstoves–Ethanol vs. firewood			
Blood pressure (mmHg) - Alexander et al. (2017) ³⁴	Normal blood pressure: 39/48 Pre-hypertension: 8/48 Hypertension: 1/48	Normal blood pressure: 42/53 Pre-hypertension: 12/53 Hypertension: 1/53	Hypertensive verse non-hypertensive—Fisher's exact— $p = 0.10$
Birthweight (g)—Alexander et al. (2018) ³⁵	Mean: 3081 g, SD: 470, <i>n</i> = 50	Mean: 2942, SD: 403, n = 48	AMD: 197 (95% CI: 25–368) Adjusted for marital status and BMI
Gestational age (weeks)—Alexander et al. (2018) ³⁵	Mean: 39.4, SD: 1.6, <i>n</i> = 51	Mean: 37.9, SD: 5.5, <i>n</i> = 54	AMD: 1.6 (95% Cl: 0.04–3.2) Adjusted for marital status and BMI
Birth length (cm)—Alexander et al. (2018) ³⁵	Mean: 46.6, SD: 5.3, <i>n</i> = 50	Mean: 46.4 , SD: 5.4 , $n = 47$	Calculated ^a MD: 0.2, SD: 8 Reported <i>p</i> = 0.92
Head Circumference (cm)—Alexander et al. (2018) ³⁵	Mean: 33.8, SD: 2.9, <i>n</i> = 50	Mean: 34.3, SD: 2.1, <i>n</i> = 48	Calculated ^a MD:-0.5, SD: 4 Reported $p = 0.3$
Respiratory rate (breath/min)— Alexander et al. (2018) ³⁵	Mean: 125, SD: 20.1, <i>n</i> = 49	Mean: 123, SD: 10.7, n = 46	Calculated ^a MD: 2, SD: 23 Reported <i>p</i> = 0.53
Preterm birth—Alexander et al. (2018) ³⁵	5/51	5/54	Calculated ^a OR: 1.07 (95% CI: 0.29–3.9) Reported <i>p</i> = 1.0
Stillborn—Alexander et al. (2018) ³⁵	0/51	2/54	OR could not be calculated Reported $p=1.0$
Miscarriage–Alexander et al. (2018) ³⁵	0/50	1/46	OR could not be calculated $p = 0.058$
Birth defects—Alexander et al. (2018) ³⁵	0/50	0/50	OR could not be calculated Reported $p=1.0$
Neonatal death—Alexander et al. (2018) ³⁵	0/51	0/54	OR could not be calculated $p = 1.0$
Perinatal mortality—Alexander et al. (2018) ³⁵	0/51	1/46	OR could not be calculated Reported $p = 0.058$
Improved cookstove (ICS) Birthweight (g)			
Hanna et al. ³⁶ (2016) ^b	Mean: 2930, SD: 985, <i>n</i> = 241	Mean:2964, SD:886, n = 400	Calculated ^a MD:34, SD:77.4 Reported p=0.49

Publication	Intervention	Control	Effect estimate
Katz et al. (2020) ³⁷	ICS < 33% - Mean: 2628, SD: 443, n = 133	Mean: 2630, SD: 443, n=558	AMD: -12.8 (95% Cl: -107.1-81.4)
	ICS: 33%-65% - Mean:2647, SD: 418, n = 116		AMD: -7.7 (95% Cl: -112.7-97.4)
	ICS: 66%-99% - Mean: 2676, SD: 408, <i>n</i> = 104		AMD: 28.9 (95% Cl: -87.2-145.0)
	ICS: 100% - Mean: 2657, SD: 439, <i>n</i> = 360		AMD: –5.5 (95% Cl: –122.6–111.6) Adjusted for secular trends and sex of infant
Thompson et al. $(2011)^{38}$	Mean: 2797 (95% CI: 2697, 2896), n = 69	Mean: 2729 (95% Cl: 2654–2804) n = 105	Beta coefficient 89 g (95% CI: -27 to 204) <i>p</i> -value 0.13 Adjusted for height, gravidity, diastolic blood pressure, and season of birth
Wylie (2017) ³⁹	Mean: 2920, SD: 460, <i>n</i> = 488	Mean = 2890, SD: 490, <i>n</i> = 475	Calculated ^a MD: 30, SD: 30.6
Preterm birth			
Katz et al. (2020) ³⁷	ICS < 33%: 39/165	212/943	ARR: 1.38 (95% CI: 0.97-1.97)
	ICS: 33%-65%: 19/141		ARR: 0.81 (95% CI: 0.50-1.32)
	ICS: 66%-99%: 27/125		ARR: 1.41 (95% CI: 0.91–2.20)
	ICS: 100%: 105/474		ARR: 1.66 (95% CI: 1.08-2.57) Adjusted for secular trends and sex of infant
Wylie (2017) ³⁹	17/488	24/475	Calculated ^a OR: 1.02 (95% Cl: 0.32-1.38)
Low birth weight			
Ahmed et al. (2015) ³³	110/469	179/499	Control (intervention as reference): AOR: 1.76 (95% CI: 1.31-2.38) p < 0.001 Adjusted for maternal age, maternal parity, BMI, gestational age, maternal education, SES score, time spend for cooking, husband smoking, SpCO 1 st trimester
Katz et al. (2020) ³⁷	ICS <33%: 62/118	227/588	ARR:1.14 (95% CI:0.90, 1.44)
	ICS 33-65%: 4/166		ARR:0.83 (95% CI:0.59,1.17)
	ICS 66–99%: 35/104		ARR:0.92 (95% CI:0.63,1.34)
	ICS 100%: 116/360		ARR:0.95 (95% CI:0.65, 1.30) Adjusted for secular trends and sex of infant
Thompson et al. $(2011)^{38}$	13/69	26/105	AOR: 0.74 (95% CI: 0.33-1.66) Adjusted for maternal height, gravity, maternal diastolic blood pressure, and season of birth
Wylie (2017) ³⁹	77/488	83/475	Calculated ^a OR: 0.88 (95% CI: 0.21–1.24)
Small for gestational age			

TABLE 3 (Continued)

WII FV 15 of 32

(Continues)

				(
Publication	Intervention	Control	Effect estimate	of 32
Katz et al. (2020) ³⁷	ICS <33%: 62/118	248/522	ARR:1.14 (95% CI:0.90-1.44)	
	ICS 33-65%: 57/102		ARR:1.21 (95% CI:0.95-1.54)	W
	ICS 66-99%: 47/93		ARR:1.11 (95% CI:0.83-1.48)	
	ICS 100%: 146/331		ARR:1.00 (95% CI:0.74-1.34)	ΕY
			Adjusted for secular trends and sex of infant	/
Wylie (2017) ³⁹	103/488	99/475	Calculated ^a OR: 1.02 (95% Cl: 0.32–1.38)	
Other pregnancy outcomes				
Gestational age (weeks): Katz et al.	ICS <33%: Mean:38.4, SD:3.1, n=165	Mean:38.6, SD:2.7, n=948	AMD -0.51 (95% CI: -1.03-0.001)	
(2020) ³⁷	ICS 33-65%: Mean:39.2, SD:2, n=141		AMD 0.27 (95% Cl: -0.30-0.39)	
	ICS 66-99%: Mean:38.8, SD:2.7, n=125		AMD –0.24 (95% Cl: –0.75–0.39)	
	ICS 100%: Mean:38.5, SD:2.7, n=474		AMD -0.75 (95% Cl: -1.360.14) Adjusted for secular trends and sex of infant	
Stillbirth/miscarriage: Hanna et al. ³⁶ (2016) ^b	287/587	401/1060	Calculated ^a OR:1.55 (95% CI: 0.6–1.88)	
Infant Mortality: Hanna et al. ³⁶ (2016) ^b	28/488	42/701	Calculated ^a OR: 0.96 (95% Cl: 0.45–1.6)	
LPG stove				
Birthweight (g): Wylie (2017) ³⁹	Mean: 2870, SD: 490, <i>n</i> = 340	Mean:2890, SD: 490, <i>n</i> = 475	Calculated ^a MD: -20 , SD: 34.8 Reported $p = 0.68$	
LBW: Wylie (2017) ³⁹	59/340	83/475	Calculated ^a OR: 0.99 (95% CI: 0.69–1.42)	
Preterm birth: Wylie (2017) ³⁹	17/340	24/475	Calculated ^a OR: 0.99 (95% CI: 0.52–1.87)	
SGA: Wylie (2017) ³⁹	75/340	99/475	Calculated ^a OR: 1.07 (95% CI: 0.77–1.5)	
Stillbirth: Wylie (2017) ³⁹	6/346	15/490	Unadjusted OR: 0.6 (95% CI: 0.2–1.5) (adjustment not reported)	
ICS compared to LPG stove				
Katz et al. $(2020)^{37}$ Birthweight (g)	LPG: Mean: 2742, SD: 431, <i>n</i> = 207	ICS: Mean: 2790, SD: 427, n = 188	MD: -37(95% Cl: -122-47) (adjustment not reported)	
Katz et al. (2020) ³⁷ Gestational age (weeks)	LPG: Mean: 39, SD: 2.4, n = 243	ICS: Mean: 39.2, SD: 2.2, n = 248	MD: -0.3 (95% CI: -0.7-0.2) (adjustment not reported)	
Katz et al. $(2020)^{37}$ Preterm birth	LPG: 47/243	ICS: 33/248	RR: 1.45 (95% CI: 0.97-2.19) (adjustment not reported)	
Katz et al. (2020) ³⁷ LBW	LPG: 65/207	ICS: 44/188	RR: 1.34 (95% CI: 0.97–1.86) (adjustment not reported)	
Katz et al. $(2020)^{37}$ SGA	LPG: 86/184	ICS: 84/176	RR: 0.98 (95% CI: 0.79–1.21) (adjustment not reported)	WO
Child health outcomes				SLL

Chil

16 of 32

TABLE 3 (Continued)

po eu eu
5.76 (95% Cl: 14.89–16.63) pe hild-years re Pneumonia: 186/7964 33 (95% Cl: 2.00–2.97) 10t reported)
bined ICS and firewood use (not sported)
rted in child weeks: ieldworker diagnosed-aul: 321/1- ieldworker diagnosed-severe: 6/14 719 :al ARI-all: 124/15 529 :al ARI-severe: 60/15 553 ician-diagnosed radiological pneu li: 41/15 558 ician-diagnosed radiological neumonia-severe: 25/15 559 reunoia-severe: 25/15 559
5/15 542 ician-diagnosed RSV negative—sev 7/15 564 ician-diagnosed RSV positive—all: 3/15 556 cian-diagnosed RSV positive—seve 0/15 568
eported
rted in child observations: 360
rted in child-years: 64 11 (95% CI: 0.04–0.19)

Publication	Intervention	Control	Effect estimate
Tielsch et al. (2016) ⁴⁸	Not reported	Not reported	AOR: 0.68 (95% Cl: 0.48-0.95)
Kirby et al. (2019) ⁴³	Reported in child observation: 51/2850	Reported in child observations: 112/3090	APR: 0.51 (95% CI: 0.36-0.74) Adjusted for age and gender
Other child health outcomes			
Mortimer et al. (2017) ⁴⁵ Asthma	Reported in child-years: 6/7964 IR: 0.08 (95% Cl: 0.02-0.14)	Reported in child-years: 10/8027 IR: 0.02 (95% Cl: 0.01–0.06)	IRR: 3.03 (95% CI: 0.51-18.11) <i>p</i> = 0.22
Mortimer et al. (2017) ⁴⁵ Death	Reported in child-years: 3/7964 IR: 0.04 (95% CI: 0.00-0.08)	Reported in child-years: 4/8027 IR: 0.05 (95% Cl: 0.00–0.10)	IRR: 0.76 (95% Cl: 0.17–3.37) <i>p</i> = 0.71
Tielsch et al. (2016) ⁴⁸ Persistent Cough	Not reported	Not reported	AOR: 0.91 (95% Cl: 0.85–0.97),
Tielsch et al. (2016) ⁴⁸ Wheeze	Not reported	Not reported	AOR: 0.87 (95% Cl: 0.78-0.97)
Abbreviations: AMD, adjusted mean differen B, traditional biomass.	ice; APR, prevalence ratio; ARO, adjusted odds ra	itio; IR, incident rate; IRR, incident rate ratio; M	D, mean difference; OR, odds ratio; <i>p</i> , <i>p</i> value; RR, relative risk;

null and a substantial benefit. In the stratification by geographic region, studies undertaken in Latin America, which were both located at high geographic elevation, displayed a decrease in the risk of ALRI in the intervention compared to control (RR: 0.70; 95% CI: 0.53– 0.93). However, this effect was not seen in studies undertaken in Africa (RR: 1.01; 95% CI: 0.59–1.73), where a considerable level of heterogeneity remained (l^2 : 76%).

3.3.2 | Burns

Cooking-related burns among children were reported as secondary or adverse health outcomes in three studies (Ethiopia,⁴⁰ Rwanda,⁴³ Malawi⁴⁵); however, only one study⁴³ provided a definition of maternal-reported burns in their child occurring in the 2 months before the fieldworker visit. Of the three studies, only one study⁴³ showed clear statistical evidence of a decrease in the frequency of burns in the intervention group, at an individual study level. In the meta-analysis (Figure 9), cooking using an ICS was observed to decrease the risk of burns (RR: 0.66; 95% CI: 0.45–0.96) compared to the control group.

3.4 | Assessment of intervention compliance

Difference in the measurement and reporting of intervention compliance was observed between all included studies, looking at stove use,^{36,40,42-44,47} functioning of stove,^{38,40,43,47} and sole use of new fuel⁴⁴ (Appendix 6). Of the 13 included studies four did not report compliance,^{33-35,41,46} one study obtained self-reported measures of compliance,³⁶ four studies used both self-report and fieldworker observations,^{40,42-44} three studies used fieldwork observations,^{37-39,47-49} and a single study used objective stove use monitors.⁴⁵ Only six out of the nine studies measured compliance, and those reported the level of compliance to range from 41% to 90% for use of the intervention stove, with one study⁴³ reporting reducing compliance across the trial period.

4 | DISCUSSION

Results obtained from the raw data provided in the supplementary material by Hanna et al. 2016.

Odds ratio calculated from data provided

This systematic review identified 13 eligible studies exploring the impact of HAP intervention measures (which presented seven pregnancy and nine child health outcomes), undertaken in a variety of LMIC settings, with a range of follow-up times and health outcomes. All interventions included were structural (eg, improved cookstoves, chimneys) or clean fuel transitional interventions aimed at harm mitigation; often with complex designs (eg, continuous intervention deployment) of multiple interventions and reported health outcomes. There was a range of study methodological quality with the weakest studies being hampered by poor reporting; in addition to differing outcome definitions, measurement timings in relation to health events, intervention deployment, and assessment of compliance.

(Continued)

BLE 3

₹

FIGURE 4 Forest plot for the change in LBW between ICS and traditional cooking. Number of observations = 3456. A random effects model was used. Abbreviations: 95% CI, 95% confidence interval; I^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; OR, odds ratio; *p*, *p* value; τ^2 , tau-squared, Test of $\theta_i = \theta_j$: Q(3), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z statistic for overall estimate

FIGURE 5 Forest plot for the change in SGA between ICS and traditional cooking. Number of observations = 2129. A random effects model was used. Abbreviations: 95% CI, 95% confidence interval; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; OR, odds ratio; *p*, *p* value; τ^2 , tau-squared, Test of $\theta_i = \theta_j$: Q(2), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z statistic for overall estimate

In addition, this systematic review goes beyond that on the Thakur et al.⁵⁰ review including three large-scale peer-reviewed papers providing 1271 observations for pregnancy outcomes and 25 195 child observations, a broader geographical scope, addition of gray literature, and inclusion of childhood burns as a health outcome.

Within this systematic review, evidence synthesis suggests that the use of ICS results in a reduction in risk of LBW, burns, and ALRI among children aged under 5 years in high-altitude wood cooking settings in Latin America. However, these results could be due to differing situational factors of high altitudes compared to lower altitudes, for example, lower temperatures and reduced ventilation⁵¹ as well as differences in respiratory physiology.⁵² Misclassification of health outcomes is also likely to have been further compounded by the timing of the intervention in relation to the disease progression, reducing the potential observed

effect. In addition, exposure-response relationships indicate that PM_{2.5} needs to be reduced to low levels to reduce ALRI risk⁵³; as reflected by the WHO-IAQ. It is also recognized that any reduction in PM2.5 due to HAP exposure is of wider benefit for child health. Further randomized controlled trials to assess effectiveness for improving pregnancy outcomes should deploy the selected intervention prior to or early in the first trimester, as this reflects the period in which the fetus is most vulnerable to adverse impacts of air pollution exposure⁵⁴⁻⁵⁶; supported by our finding that deployment in the first trimester may reduce risk of LBW.^{33,37} In addition, the greater mean birthweight observed with use of ICS compared to controls, could have clinical significance even though no statistical significance was observed; corroborated with substantive body of observational evidence documenting the health benefits of cleaner cooking. In addition, to improvements in pregnancy

FIGURE 6 Forest plot for the change in PTB between ICS and traditional cooking. Number of observations = 2811. A random effects model was used. Abbreviations: 95% CI, 95% confidence interval; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; OR, odds ratio; *p*, *p* value, τ^2 , tau-squared, Test of $\theta_i = \theta_j$: Q(2), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z statistic for overall estimate

FIGURE 7 Forest plot of studies reporting rates of ARI, with definitions that are compared to the WHO IMCI criteria, between ICS and traditional cooking. Number of observations = 78 962. A random effects model was used. Abbreviations: 95% CI, 95% confidence interval; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; *p*, *p* value; RCT, randomized control trial; RR, rate ratio; τ^2 , tau-squared; Test of $\theta_i = \theta_i$; Q(5), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z, statistic for overall estimate

outcomes being seen within modest reduction in CO exposure.⁵⁷ Biological plausibility between HAPs and pregnancy or child respiratory outcomes has been well documented.¹² Carbon monoxide exposure and reduction in maternal lung function, results in oxidative stress, reducing oxygen availably to the fetus.¹² However, there is less understanding of the role of PM, but PM can reduce

21 of 32

FIGURE 8 Forest plot of studies reporting rates of ALRI, with definitions that are compared to the WHO IMCI criteria, between ICS and traditional cooking. Number of observations = 54 343. A random effects model was used. Abbreviations: 95% CI, 95% confidence interval; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; *p*, *p* value; RCT, randomized control trial; RR, rate ratio; τ^2 , tau-squared; Test of $\theta_i = \theta_i$: Q(4), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z statistic for overall estimate

maternal lung function and cause inflammation.⁵⁸ Conversely, PM reaches deep inside the immature lungs of children causing inflammation, oxidative stress, and reduces lung development.⁵⁹ HAPs do not directly cause burns but instead the stove safety is the mechanism for reducing harm. However, for the other included health outcomes, it is difficult to draw any substantive conclusions as to the health benefit of the respective interventions due to variations in setting, contextual characteristics, outcome assessment, timing of intervention deployment, intervention follow-up, study quality, and sample size; which is consistent with previous evaluation of HAP interventions with regard to other outcomes.^{7,16,60}

Duration of follow-up is an important additional consideration to timing of intervention deployment. The unresolved heterogeneity within the ALRI meta-analysis, which could not be explained by differences in study setting or design, was driven by the study undertaken by Mortimer et al. 2017⁴⁵; who recruited children up until 6 months before the end of the study, resulting in an internal variation in follow-up duration. At the other end of the spectrum, Litchfield 2018⁴⁴ assessed the outcome measure at a single time point only 4 months after the interventions were deployed using a proxy measure for ARI; meaning that this study could not be included within the meta-analysis as it was not a rate. Smith et al., 2011⁴⁷ completed weekly visits over 14–18 months to determine the number of ARI episodes. Additionally, only six out of eight studies observed ARI outcomes in children after 6 months of age, as new stove use has been observed to reduce and stabilize after 200 days after intervention deployment,⁶¹ therefore, short follow-up duration would be an overestimate of stove use and raises potential comparison issues between pre- and post-6-month ARI estimates.

As well as simultaneous use of multiple domestic fuels and/or cooking apparatus—"stacking," a change in stove use over time and the observed low levels of compliance may explain the heterogeneity observed in both health benefits and harms. Conclusions about the role of compliance in uptake and sole use of the intervention are limited, as self-reported measures do not capture if the stove is in good condition⁶² and may be an overestimate, due to subject to observer or social acceptability bias.⁶³ Mortimer et al. 2017⁴⁵ attempted to use stove monitors for objective assessment with limited success. Stove monitoring would allow participants to be blinded for stove usage compliance observations but would not provide detail

FIGURE 9 Forest plot of studies reporting burns between ICS and traditional cooking. Number of observations = 41 723. A random effects model was used. Abbreviations: 95% CI, 95% confidence interval; I^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; *p*, *p* value; RCT, randomized control trial; RR, rate ratio; τ^2 tau-squared, Test of $\theta_i = \theta_j$: Q(2), chi-squared with degrees of freedom, Test of $\theta = 0$: z = z statistic for overall estimate

of fuel or stove stacking.⁶³ In addition, intervention stove use typically waned over time due to disrepair, with study investigators often providing resource for repairing and replacing stoves, thereby potentially reducing real-life applicability and generalizability. The Nigerian Ethanol cookstove intervention team provided health promotion advice on how to reduce pollution^{34,35} to all which may be why there was a smaller difference between intervention and control groups; however, it does present a more realistic real-world scenario. In addition, educational packages are often lacking for many interventions, but may provide a vital tool to encourage uptake and improve long-term compliance. A lack of compliance may also be the underlying reason as to why only two out of the eight studies with reported HAP measurements achieved levels below the WHO-IAQ levels, consistent with other findings¹⁷; however, there were differences in air pollutant measurement type, location, duration between the studies and potential attenuation through neighbors not receiving the intervention.¹⁵ In addition, those studies reporting a reduction in HAP between the intervention and control, did not alter the summary effect size for birthweight (n = 2; Appendix 7), LBW (n = 2; Appendix 8), and ARI (n = 2; Appendix 9). Few studies investigated an exposure-response relationship, which limits any discussion on the presence of an exposure-response relationship in the absence of any treatment effect.

As all the identified eligible interventions were structural or clean fuel transitional interventions, albeit it within the limitations of the search strategy (eg, synonyms of cleaner fuels), we identified a knowledge gap concerning the effectiveness of behavioral and community-led interventions (eg, outdoor cooking, using dry wood, ventilation) to reduce maternal and child health harms of HAP exposure. Short-term harm reduction, community-led, initiatives should not be neglected, as they have the potential to reduce exposure⁶⁴⁻⁶⁶ and deliver a health benefit.⁶⁷ Future interventions need to take into consideration contextual, community, and end-user needs,^{7.16}

including engagement with government, stakeholders, and investors⁶⁸; so that the community can continually invest in interventions to maintain sustained usage.⁶⁹ The RCT study design allows for a robust comparison of the benefits of the intervention enabling higher methodological quality assessment, investigation of the exposure-response relationship,⁷⁰ and evaluation of socioeconomic implications.⁷¹ However, study periods are often relatively short and participants are encouraged/incentivized to use and engage with the interventions,⁴⁴ and so they typically fail to fully account for decreasing intervention uptake and usage over time, thereby limiting the achievement of a sustained HAP exposure reduction and health benefits.43 Additionally, multi-disciplinary studies should address improved criteria/procedures for assessment of health outcomes, (as existing studies have been identified as adopting unclear and inconsistent health outcome definitions), alongside independent objective assessment (eg, by healthcare workers) of health outcomes to aid blinding and reduce risk of observation bias. Our recommendations to improve the evaluation of HAP intervention measures, require appropriate research funding investment, resources and expertise to undertake such trials of complex intervention measures in low-income settings. Complex interventions may be difficult to standardize,¹ and improvements which could help reduce variation between trials should be encouraged while not unduly limiting innovation in intervention development.

The systematic review highlights the variation in study design, intervention type, and outcome, which limits the number of comparable studies. Therefore, it was not possible to wholly address uptake and efficacy of HAP interventions; but only to identify and assess quantitative data reporting the relationship between intervention (eg, ICS/fuel) uptake and maternal and child health outcomes. Despite the potential documented benefit of ICS, there is a move away from ICS to cleaner fuel to be able to achieve the WHO-IAQ and address the health impacts of HAPs, due to the

23 of 32

WILEY

exposure-response curves indicating a need for reduction to very low levels. The HAPIN trial,⁷²⁻⁷⁴ an ongoing four country LPG stove RCT, with rigorous methods including free fuel to incentivize compliance, could provide important results to strengthen the evidence for new and existing child and maternal health outcomes. We recommend large-scale trials reporting multiple health, HAP, and uptake outcomes adhering to full reporting procedures including a summative assessment of all outcome measures in a published article, providing better reporting and dissemination of the benefits of such interventions. In addition, no study was found reporting exposure to HAP from heating and lighting. Households have little or no choice of alternative options and are likely to be a major source, therefore, altering cooking practice where heating is required will have little effect on exposure. Conversely, there are other good options of lighting intervention (eg, solar lamps) which can be explored. This review highlights an existing research gap in short-term transitional harm reduction interventions, which are required to make air quality and health improvements in the short term. It could be argued that in countries with limited resources there should be a focus on the consolidation of existing evidence, which while relatively weak, can be useful for developing actionable evidence for policymakers⁷⁰ on the effectiveness as well as facilitators and barriers to implementation and adoption of HAP interventions.

5 | CONCLUSION

This systematic review shows that ICS interventions have the potential to reduce ARI risk among those living in high-altitude settings, incident burns in children under 5 years, and risk of LBW. However, there are future research and policy implications for funding and development of effective community orientated short-medium and long-term household intervention measures, which should be adequately investigated using robust study methodology. These interventions may deliver a substantial benefit for child and maternal health and would help support sustainable development in LMIC settings worldwide.

ACKNOWLEDGMENT

We are very grateful for Karen Biddle's support in proofreading the manuscript.

CONFLICT OF INTERESTS

We declare no competing interests.

AUTHOR CONTRIBUTIONS

KEW: Conceptualization, methodology, data curation, formal analysis, visualization, and writing original draft. EDC: Conceptualization, methodology, data curation, and writing—review & editing. DJM and MJP: Methodology and writing—review & editing. HLL and JS: Data curation and writing—review & editing. SEB: Conceptualization, supervision, writing—review & editing. SMH and GNT: Supervision and writing-review & editing. RD, FDP, SMG, and DW: Writing-review & editing.

PEER REVIEW

The peer review history for this article is available at https://publo ns.com/publon/10.1111/ina.12958.

ORCID

Katherine E. Woolley b https://orcid.org/0000-0003-3743-9925 Emma Dickinson-Craig b https://orcid.org/0000-0002-9706-7193 Jameela Sheikh b https://orcid.org/0000-0002-6409-6940 Rosie Day b https://orcid.org/0000-0003-1766-4068 Francis D. Pope b https://orcid.org/0000-0001-6583-8347 Sheila M. Greenfield b https://orcid.org/0000-0002-8796-4114 Suzanne E. Bartington b https://orcid.org/0000-0002-8179-7618 David Warburton b https://orcid.org/0000-0003-0686-3977 Semira Manaseki-Holland b https://orcid.

Malcolm J. Price b https://orcid.org/0000-0002-7352-3027 David J. Moore b https://orcid.org/0000-0002-4163-4080 G. Neil Thomas b https://orcid.org/0000-0002-2777-1847

REFERENCES

- Medical Research Council (MRC). Developing and evaluating complex interventions. Published 2019. Accessed October 3, 2019. https://mrc.ukri.org/documents/pdf/complex-interventions-guida nce/
- Smith KR. Fuel combustion, air pollution exposure, and health: the situation in developing countries. Annu Rev Environ Resour. 1993;18:529-566.
- Iessa L, De Vries YA, Swinkels CE, Smits M, Butijn CAA. What's cooking? Unverified assumptions, overlooking of local needs and pro-solution biases in the solar cooking literature. *Energy Res Soc Sci.* 2017;28:98-108. doi:10.1016/j.erss.2017.04.007
- Shankar AV, Quinn AK, Dickinson KL, et al. Everybody stacks: Lessons from household energy case studies to inform design principles for clean energy transitions. *Energy Pol.* 2020;141:111468. doi:10.1016/j.enpol.2020.111468
- World Health Organization (WHO). Burning opportunity: Clean household energy for health, sustainable development, and wellbeing of women and children. Luxembourg. Published 2016 Accessed June 25, 2020. https://www.who.int/airpollution/publications/ burning-opportunities/en/
- World Health Organization (WHO). WHO Global Air Quality Guidelines; 2021.
- Thomas E, Wickramasinghe K, Mendis S, Roberts N, Foster C. Improved stove interventions to reduce household air pollution in low and middle income countries: a descriptive systematic review. BMC Public Health. 2015;15:650. doi:10.1186/s12889-015-2024-7
- Dohoo C, Guernsey JR, Critchley K, VanLeeuwen J. Pilot study on the impact of biogas as a fuel source on respiratory health of women on rural Kenyan smallholder dairy farms. J Environ Public Health. 2012;2012:1-9. doi:10.1155/2012/636298
- World Health Organization (WHO). WHO Guidelines for Indoor Air Quality: Household Fuel Combustion. World Health Organization; 2018.
- Okello G, Devereux G, Semple S. Women and girls in resource poor countries experience much greater exposure to household air

pollutants than men: results from Uganda and Ethiopia. *Environ Int.* 2018;119:429-437. doi:10.1016/j.envint.2018.07.002

- 11. GBD, 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet*. 2020;396(10258):1223. doi:10.1016/S0140-6736(20)30752-2
- Amegah AK, Quansah R, Jaakkola JJK. Household air pollution from solid fuel use and risk of adverse pregnancy outcomes: a systematic review and meta-analysis of the empirical evidence. *PLoS One*. 2014;9(12):e113920. doi:10.1371/journal.pone.0113920
- Misra P, Srivastava R, Krishnan A, Sreenivaas V, Pandav CS. Indoor air pollution-related acute lower respiratory infections and low birthweight: a systematic review. J Trop Pediatr. 2012;58:457-466. doi:10.1093/tropej/fms017
- 14. World Health Organization (WHO). Air pollution and child health: perscribing clean air; 2018. Accessed July 8, 2019. https://www. who.int/ceh/publications/air-pollution-child-health/en/
- Pope D, Bruce N, Dherani M, Jagoe K, Rehfuess E. Real-life effectiveness of 'improved' stoves and clean fuels in reducing PM 2.5 and CO: systematic review and meta-analysis. *Environ Int.* 2017;101:7-18. doi:10.1016/j.envint.2017.01.012
- Thakur M, Nuyts PWAW, Boudewijns EA, et al. Impact of improved cookstoves on women's and child health in low and middle income countries: a systematic review and meta-analysis. *Thorax*. 2018;73(11):1026-1040. doi:10.1136/thoraxjnl-2017-210952
- 17. Quansah R, Semple S, Ochieng CA, et al. Effectiveness of interventions to reduce household air pollution and/or improve health in homes using solid fuel in low-and-middle income countries: a systematic review and meta-analysis. *Environ Int.* 2017;103:73-90. doi:10.1016/j.envint.2017.03.010
- Bruce N, Pope D, Rehfuess E, Balakrishnan K, Adair-Rohani H, Dora C. WHO indoor air quality guidelines on household fuel combustion: strategy implications of new evidence on interventions and exposure-risk functions. *Atmos Environ*. 2015;106:451-457. doi:10.1016/j.atmosenv.2014.08.064
- Puzzolo E, Stanistreet D, Pope D, Bruce N, Rehfuess E. Factors Influencing the Large-Scale Uptake by Households of Cleaner and More Efficient Household Energy Technologies. EPPI-Centre, Social Science Research Unit, Institute of Education, University of London; 2013.
- Woolley KE, Dickinson-Craig E, Bartington SE, et al. Effectiveness of interventions to reduce household air pollution from solid biomass fuels and improve maternal and child health outcomes in lowand middle-income countries: a systematic review protocol. *Syst Rev.* 2021;10(1):33. doi:10.1186/s13643-021-01590-z
- Dickinson-Craig E, Woolley K, Bartington S, et al. Effectiveness of interventions, to reduce household air pollution from solid biomass fuels to improve pregnancy and child health outcomes in low and middle income Countries: a systematic review protocol. CRD42020164998; 2020. Accessed September 17, 2020. https:// www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42 020164998
- 22. EBSCO. GreenFILE. Published 2020. Accessed May 18, 2020. https://www.ebsco.com/products/research-databases/greenfile
- Epistemonikos. Epistemonikos: database of the best evidencebased health care. Published 2020. Accessed May 18, 2020. https://www.epistemonikos.org/en/
- 24. World Health Organization (WHO). International Clinical Trials Registry Platform (ICTRP). Published 2020. Accessed July 24, 2020. http://www.who.int/ictrp/en/
- Development Assistance Committee (DAC). DAC List of ODA recipients effective for reporting on 2020 flows. Published 2020 Accessed September 2, 2020. https://www.oecd.org/dac/finan cing-sustainable-development/development-finance-standards/ DAC-List-of-ODA-Recipients-for-reporting-2020-flows.pdf
- 26. EPHPP. (Effective public health practice Project). Quality assessment tool for quantitative studies; 1998. Accessed December

20, 2019. https://www.ephpp.ca/PDF/QualityAssessment-Tool_2010_2.pdf

- 27. StataCorp. Stata Statistical Software: Release 16; 2019.
- Sterne J, Egger M, Moher D, Boutron I. Chapter 10: Addressing reporting biases. In: Higgins JPT, Churchill R, Chandler JC, Cumpston MS eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.2.0. Chochrane; 2017. Accessed March 5, 2021. https://training.cochrane.org/sites/training.cochrane.org/ files/public/uploads/resources/Handbook5_1/Chapter_10_Handb ook_5_2_10.pdf
- 29. Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 2002;21(21):3153-3159. doi:10.1002/sim.1262
- Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. *Stat Med.* 2001;20(24):3875-3889. doi:10.1002/sim.1009
- Untied Nations (UN). World Population Prospects Population Division - United Nations. Published 2019. Accessed November 24, 2020. https://population.un.org/wpp/DefinitionOfRegions/
- Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ*. 2011;343(7818):d4002. doi:10.1136/bmj.d4002
- 33. Ahmed A, Ahmmed F, Hossain S, et al. Simple and safe "100-dollar-kitchen" to prevent low-birth-weight in a rural area in Bangladesh: A cluster randomized controlled trial. In: 22nd Canadian Conference on Global Health. Montreal, Canada; 2015.
- Alexander D, Northcross A, Wilson N, et al. Randomized controlled ethanol cookstove intervention and blood pressure in pregnant Nigerian women. Am J Respir Crit Care Med. 2017;195(12):1629-1639. doi:10.1164/rccm.201606-1177OC
- 35. Alexander DA, Northcross A, Karrison T, et al. Pregnancy outcomes and ethanol cook stove intervention: a randomized-controlled trial in Ibadan, Nigeria. *Environ Int.* 2018;111:152-163. doi:10.1016/j. envint.2017.11.021
- Hanna R, Duflo E, Greenstone M. Up in smoke: the influence of household behavior on the long-tun impact of improved cooking stoves. Am Econ J Econ Policy. 2016;8(1):80-114. doi:10.1257/ pol.20140008
- Katz J, Tielsch J, Khatry S, et al. Impact of improved biomass and liquid petroleum gas stoves on birth outcomes in rural Nepal: results of 2 randomized trials. *Glob Heal Sci Pract*. 2020;8(3):372-382. doi:10.9745/GHSP-D-20-00011
- Thompson LM, Bruce N, Eskenazi B, Diaz A, Pope D, Smith KR. Impact of reduced maternal exposures to wood smoke from an introduced chimney stove on newborn birth weight in rural Guatemala. *Environ Health Perspect*. 2011;119(10):1489-1494. doi:10.1289/ehp.1002928
- 39. Wylie BJ. The Ghana randomized air pollution and health study (GRAPHS): a cluster-randomized trial of clean cookstoves to improve obstetric outcomes. *Am J Obstet Gynecol.* 2017;216(1):S23. doi:10.1016/j.ajog.2016.11.923
- Adane MM, Alene GD, Mereta ST, Wanyonyi KL. Effect of improved cookstove intervention on childhood acute lower respiratory infection in Northwest Ethiopia: a cluster-randomized controlled trial. *BMC Pediatr.* 2021;21(4):1-13. doi:10.1186/s12887-020-02459-1
- 41. Harris SA, Weeks JB, Perez Chen J, Layde P. Health effects of an efficient vented stove in the highlands of Guatemala. *Glob Public Health*. 2011;6(4):421-432. doi:10.1080/17441692.2010.523708
- 42. Hartinger SM, Lanata CF, Hattendorf J, et al. Improving household air, drinking water and hygiene in rural Peru: a communityrandomized-controlled trial of an integrated environmental home-based intervention package to improve child health. *Int J Epidemiol.* 2016;45(6):2089-2099. doi:10.1093/ije/dyw242
- 43. Kirby MA, Nagel CL, Rosa G, et al. Effects of a large-scale distribution of water filters and natural draft rocket-style cookstoves on diarrhea and acute respiratory infection: a cluster-randomized

controlled trial in Western Province, Rwanda. *PLoS Med.* 2019;16(6):e1002812. doi:10.1371/journal.pmed.1002812

- Litchfield T. Use of biomass briquettes: its effect on household air pollution and on pneumococcal nasopharyngeal carriage in Gambian women and young children. A randomized controlled trial. PhD thesis, London School of Hygiene & Tropical Medicine. 2018. doi:10.17037/PUBS.04647890
- 45. Mortimer K, Ndamala CB, Naunje AW, et al. A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial. *Lancet*. 2017;389(10065):167-175. doi:10.1016/S0140-6736(16)32507-7
- Schilmann A, Riojas-Rodríguez H, Ramírez-Sedeño K, Berrueta V, Pérez-Padilla R, Romieu I. Children's respiratory health after an efficient biomass stove (Patsari) intervention. *EcoHealth*. 2015;12(1):68-76. doi:10.1007/s10393-014-0965-4
- Smith KR, Mccracken JP, Weber MW, et al. Effect of reduction in household air pollution on childhood pneumonia in Guatemala (RESPIRE): a randomised controlled trial. *Lancet*. 2011;378(9804):1717-1726. doi:10.1016/S0140-6736(11)60921-5
- Tielsch JM, Katz J, Khatry SK, et al. Effect of an improved biomass stove on acute lower respiratory infections in young children in rural Nepal: a cluster-randomised, step-wedge trial. *Lancet Glob Health*. 2016;4:S19. doi:10.1016/S2214-109X(16)30024-9
- Quinn A, Ayuurebobi K, Kinney P, et al. Ambulatory monitoring demonstrates an acute association between cookstove-related carbon monoxide and blood pressure in a Ghanaian cohort. *Environ Health*. 2017;16(1):76. doi:10.1186/s12940-017-0282-9
- Thakur M, Nuyts PWAW, Boudewijns EA, et al.Impact of improved cookstoves on women's and child health in low and middle income countries: a systematic review and meta-analysis Environmental exposure. *Thorax*. 2017;73:1026-1040. doi:10.1136/thoraxjnl-2017-210952
- Basagaña X. Household air pollution as an important factor in the complex relationship between altitude and COPD. *Eur Respir J.* 2019;53:1802454. doi:10.1183/13993003.02454-2018
- 52. Crocker ME, Hossen S, Goodman D, et al. Effects of high altitude on respiratory rate and oxygen saturation reference values in healthy infants and children younger than 2 years in four countries: a cross-sectional study. *Lancet Glob Heal*. 2020;8(3):e362-e373. doi:10.1016/S2214-109X(19)30543-1
- Smith K, Bruce N, Balakrishnan K, et al. Millions dead: How do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. *Annu Rev Public Health*. 2014;35:185-206. doi:10.1146/annurev-publhealth-03201 3-182356
- Lee BE, Ha EH, Park HS, et al. Exposure to air pollution during different gestational phases contributes to risks of low birth weight. *Hum Reprod.* 2003;18(3):638-643. doi:10.1093/humrep/deg102
- 55. Lin Y, Jung C, Lee Y, Hwang B. Associations between ozone and preterm birth in women who develop gestational diabetes. Am J Epidemiol. 2015;181(4):280-287. doi:10.1093/aje/kwu264
- Ha E, Lee J, Kim H, et al. Infant susceptibility of mortality to air pollution in Seoul, South Korea. *Pediatrics*. 2003;111(2):284-290. doi:10.1542/peds.111.2.284
- 57. Quinn AK, Adjei IA, Ae-Ngibise KA, et al. Prenatal household air pollutant exposure is associated with reduced size and gestational age at birth among a cohort of Ghanaian infants. *Environ Int.* 2021;155:106659. doi:10.1016/J.ENVINT.2021.106659
- Kannan S, Misra DP, Dvonch JT, Krishnakumar A. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. *Environ Health Perspect*. 2006;114(11):1636-1642. doi:10.1289/EHP.9081
- Gordon SB, Bruce NG, Grigg J, et al. Respiratory risks from household air pollution in low and middle income countries. *Lancet Respir Med*. 2014;2(10):823-860. doi:10.1016/S2213-2600(14)70168-7

- Lewis J, Pattanayak K. Review who adopts improved fuels and cookstoves ? A systematic review. *Environ Health Perspect*. 2012;120(5):637-645. doi:10.1289/ehp.1104194
- Pillarisetti A, Jamison DT, Smith KR. Household energy interventions and health and finances in Haryana, India: An extended costeffectiveness analysis. In: Disease Control Priorities: Injury Prevention and Environmental Health, 3rd edition (Volume 7). The World Bank; 2017:223-237. doi:10.1596/978-1-4648-0522-6_ch12
- Dutta K, Shields KN, Edwards R, Smith KR. Impact of improved biomass cookstoves on indoor air quality near Pune, India. Energy Sustain Dev. 2007;11(2):19-32. doi:10.1016/S0973-0826(08)60397-X
- 63. Thomas EA, Tellez-Sanchez S, Wick C, et al. Behavioral reactivity associated with electronic monitoring of environmental health interventions -A cluster randomized trial with water filters and cookstoves. *Environ Sci Technol.* 2016;50:51. doi:10.1021/acs. est.6b00161
- 64. Nantanda R, Buteme S, Van Kampen S, et al. Feasibility and acceptability of a midwife-led health education strategy to reduce exposure to biomass smoke among pregnant women in Uganda, A FRESH AIR project. *Glob Public Health*. 2019;14(12):1770-1783. doi:10.1080/17441692.2019.1642931
- Barnes B, Mathee A, Shafritz L, Krieger L, Zimicki S. A behavioral intervention to reduce child exposure to indoor air pollution: identifying possible target behaviors. *Health Educ Behav.* 2004;31(3):306-317. doi:10.1177/1090198103260630
- Barnes B, Mathee A, Thomas E. The impact of health behaviour change intervention on indoor air pollution indicators in the rural North West Province, South Africa. J Energy South Africa. 2011;22(3):35-44. doi:10.17159/2413-3051/2011/v22i3a3220
- 67. Woolley KE, Bagambe T, Singh A, et al. Investigating the association between wood and charcoal domestic cooking, respiratory symptoms and acute respiratory infections among children aged under 5 years in Uganda: A cross-sectional analysis of the 2016 Demographic and Health Survey. *Int J Environ Res Public Health*. 2020;17(11):3974. doi:10.3390/ijerph17113974
- Puzzolo E, Pope D, Stanistreet D, Rehfuess EA, Bruce NG. Clean fuels for resource-poor settings: a systematic review of barriers and enablers to adoption and sustained use. *Environ Res.* 2016;146:218-234. doi:10.1016/j.envres.2016.01.002
- Bensch G, Peters J. One-off subsidies and long-run adoption– Experimental evidence on improved cooking stoves in Senegal. Am J Agric Econ. 2020;102(1):72-90. doi:10.1093/ajae/aaz023
- Mortimer K, Balmes JR. Cookstove trials and tribulations: What is needed to decrease the burden of household air pollution? Ann Am Thorac Soc. 2018;15(5):539-540. doi:10.1513/AnnalsATS.20171 0-831GH
- 71. Simkovich SM, Williams KN, Pollard S, et al. A systematic review to evaluate the association between clean cooking technologies and time use in low-and middle-income countries. *Int J Environ Res Public Health*. 2019;16:2277. doi:10.3390/ijerph16132277
- Clasen T, William C, Peel JL, et al. Design and Rationale of the HAPIN Study: a multicountry randomized controlled trial to assess the effect of liquefied petroleum gas stove and continuous fuel distribution. *Environ Health Perspect*. 2020;128(4):47008. doi:10.1289/ EHP6407
- Barr DB, Puttaswamy N, Jaacks LM, et al. Design and Rationale of the Biomarker Center of the Household Air Pollution Intervention Network (HAPIN) Trial. *Environ Health Perspect*. 2020;128(4):47010. doi:10.1289/EHP5751
- 74. Simkovich S, Underhill L, Kirby M, et al. Design and conduct of facility-based surveillance for severe childhood pneumonia in the Household Air Pollution Intervention Network (HAPIN) trial. *ERJ Open Res.* 2020;6(1):308-2019. doi:10.1183/23120541.00308 -2019
- 75. Adane MM, Alene GD, Mereta ST, Wanyonyi KL. Prevalence and risk factors of acute lower respiratory infection among children living in

biomass fuel using households: a community-based cross-sectional study in Northwest Ethiopia. *BMC Public Health*. 2020;20(1):1-13. doi:10.1186/s12889-020-08515-w

- Adane MM, Alene GD, Mereta ST. Biomass-fuelled improved cookstove intervention to prevent household air pollution in Northwest Ethiopia: a cluster randomized controlled trial. Environ Health Prev Med. 2021;26(1):1-15. doi:10.1186/s12199-020-00923-z
- 77. Hartinger SM, Commodore AA, Hattendorf J, et al. Chimney stoves modestly improved Indoor Air Quality measurements compared with traditional open fire stoves: results from a small-scale intervention study in rural Peru. *Indoor Air.* 2013;23(4):342-352. doi:10.1111/ina.12027
- Asante K, Wylie B, Chillrud S, et al. The Ghana Randomized Air Pollution and Health Study (GRAPHS): a cluster randomized trial of Liquified petroleum gas (LPG) and efficient biomass cookstoves delivered during pregnancy. *Environ Epidemiol*. 2019;3:296. doi:10.1097/01.EE9.0000609200.07410.e1

- 79. Wylie BJ, Quinn A, Oppong F, et al. 284: Prenatal household air pollution exposure associated with lower birth weight and length in rural Ghana. *Am J Obstet Gynecol*. 2020;222(1 Supplement):S192. doi:10.1016/j.ajog.2019.11.300
- World Health Organization (WHO). Global Index Medicus. Published 2020 Accessed May 18, 2020. https://www.globalinde xmedicus.net/

How to cite this article: Woolley KE, Dickinson-Craig E, Lawson HL, et al. Effectiveness of interventions to reduce household air pollution from solid biomass fuels and improve maternal and child health outcomes in low- and middleincome countries: A systematic review and meta-analysis. *Indoor Air.* 2022;32:e12958. doi:<u>10.1111/ina.12958</u>

APPENDIX 1

MEDLINE search strategy (n = 4306) **Population**

- 1. (Child* adj3 (young or pre-school)).ti,ab.
- 2. child, preschool/ or infant/
- 3. (pregnan* or birth).ti,ab.
- 4. (neonat* or infant or perinatal or newborn).ti,ab.
- 5. exp Infant, Newborn/
- 6. foetus.ti,ab.
- 7. Fetus/
- 8. fetus.ti,ab.
- 9. (baby or babies).ti,ab.
- 10. exp Pregnancy/ or exp Pregnant Women/
- 11. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10

Intervention

- 12.((clean* or modern) adj7 (energ* or fuel)).ti,ab.
- 13. (renewable* adj7 (energ* or fuel)).ti,ab.
- 14. (polic* adj7 (energ* or fuel)).ti,ab.
- 15. (chang* adj7 (energy* or fuel)).ti,ab.
- 16.exp Renewable Energy/ or exp Biofuels/
- 17. ((solar or wind or hydro*) adj5 (energ* or power*)).ti,ab.
- 18.(behavio\$r adj9 (fuel or cook* or vent*)).ti,ab.
- 19. (transition adj7 (energ* or fuel)).ti,ab.
- 20.(electricit* adj7 energ*).ti,ab.
- 21. ((hous* or home or domestic) adj7 (energ* or fuel)).ti,ab.
- 22.low polluting fuel*.ti,ab.
- 23. (air adj7 ventilation).ti,ab.
- 24. (air pollution adj7 intervention).ti,ab.
- 25.chimney.ti,ab.
- 26. "outdoor cook*".ti,ab.

27. 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26

Household air pollution

- 28.((household or indoor) adj3 air).ti,ab.
- 29. (HAP or IAP).ti,ab.
- 30.exp Air Pollution, Indoor/
- 31. exp Particulate Matter/
- 32. ("particulate matter" or "black carbon").ti,ab.
- 33.exp Carbon Monoxide/
- 34."carbon monoxide".ti,ab.
- 35. ((solid fuel or wood or charcoal or cook*) adj3 smok*).ti,ab.
- 36. (cookstove or stove).ti,ab.
- 37. Cooking/mt [Methods]
- 38. Household Articles/
- 39. exp "Cooking and Eating Utensils"/
- 40.26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39

LMICs

- 41.(LMIC or "lower adj3 middle income" or "developing countr*"). ti,ab.
- 42.exp Developing Countries/
- 43.exp Africa, Western/ or exp Africa, Northern/ or South Africa/ or exp Africa, Eastern/ or exp Africa, Central/ or exp "Africa South of the Sahara"/ or exp Africa/ or exp Africa, Southern/
- 44.Africa.ti,ab.
- 45. exp South America/
- 46.exp Asia, Central/ or exp Asia, Northern/ or exp Asia/ or exp Asia, Western/ or exp Asia, Southeastern/
- 47. south America.ti,ab.

48.Latin America.ti,ab.

49. Asia.ti,ab.

50.(Afghanistan or Albania or Algeria or Angola or "Antigua and Barbuda" or Argentina or Armenia or Azerbaijan or Bangladesh or Belarus or Belize or Benin or Bhutan or Bolivia or "Bosnia and Herzegovina" or Botswana or Brazil or Burkina Faso or Burundi or Cabo Verde or Cambodia or Cameroon or Central African Republic or Chad or China or Colombia or Comoros or Democratic Republic of Congo or Congo or Cook Islands or Costa Rica or Cote d'Ivoire or Cuba or Djibouti or Dominica or Dominican Republic or Ecuador or Egypt or El Salvador or Equatorial Guinea or Eritrea or Ethiopia or Fiji or Gabon or Gambia or Georgia or Ghana or Grenada or Guatemala or Guinea or Guinea-Bissau or Guyana or Haiti or Honduras or India or Indonesia or Iran or Iraq or Jamaica or Jordan or Kazakhstan or Kenya or Kiribati or Democratic People's Republic of Korea or Kosovo or Kyrgyzstan or Lao People's Democratic Republic or Lebanon or Lesotho or Liberia or Libya or Former Yugoslav Republic of Macedonia or Madagascar or Malawi or Malaysia or Maldives or Mali or Marshall Islands or Mauritania or Mauritius or Mexico or Micronesia or Moldova or Mongolia

or Montenegro or Montserrat or Morocco or Mozambique or Myanmar or Namibia or Nauru or Nepal or Nicaragua or Niger or Nigeria or Niue or Pakistan or Palau or Panama or Papua New Guinea or Paraguay or Peru or Philippines or Rwanda or Saint Helena or Samoa or "Sao Tome and Principe" or Senegal or Serbia or Sierra Leone or Solomon Islands or Somalia or South Africa or South Sudan or Sri Lanka or Saint Lucia or "Saint Vincent and the Grenadines" or Sudan or Suriname or Swaziland or Syrian Arab Republic or Tajikistan or Tanzania or Thailand or Timor-Leste or Togo or Tokelau or Tonga or Tunisia or Turkey or Turkmenistan or Tuvalu or Uganda or Ukraine or Uzbekistan or Vanuatu or Venezuela or Vietnam or "Wallis and Futuna" or "West Bank and Gaza Strip" or Yemen or Zambia or Zimbabwe).ti,ab.

51.41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50

Grouped terms

52.11 and 27 53.40 and 51 54.11 and (27 or 53)

APPENDIX 2

Breakdown of the number of articles per study by intervention and health outcome.

Study	Pregnancy outcomes	Child health outcomes
ICS (Studies = 10, Articles = 11)		
Bangladesh cookstove intervention ¹	Ahmed et al., 2015	
India improved cookstove intervention ²	Hanna <i>et al.</i> , 2016	
RESPIRE–ICS ^{3,4}	Thompson et al., 2011	Smith et al., 2011
Ethiopia Injera baking stove ⁵		Adane et al., 2021
Guatemala ONIL stove ⁶		Harris et al. 2011
Peru Optima-improved stove ⁷		Hartinger et al., 2016
Rwanda—ICS ⁸		Kibry et al., 2019
Gambia—ICS and briquettes ⁹		Litchfield 2018
CAPS-ICS ¹⁰		Mortimer et al., 2017
Mexico Patsari stove ¹¹		Schilmann et al., 2015
Ethanol cookstoves (Studies = 1, Articles = 2)		
Nigerian Ethanol cookstove ^{12,13}	Alexander <i>et al.</i> , 2017 Alexander <i>et al.</i> , 2018	
ICS and LPG (Studies = 2, Articles = 3)		
Nepal step-wedge ICS and LPG intervention ^{14,15}	Katz et al., 2020	Tielsch et al., 2016
GRAPHs ¹⁶	Wylie 2017	
Total studies = 13	Total studies = 6	Total studies = 9
Total articles = 16	Total articles = 7	Total articles = 9

Footnote: Those articles included in a meta-analysis are highlighted in bold text.

Sub-analysis of birthweight when ICS was deployed in the last trimester. Number of observations = 1828. Abbreviations: 95% CI, 95% confidence interval; g, grams; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; MD, mean difference; *p*, *p* value; τ^2 , tau-squared; Test of $\theta_i = \theta_i$: Q(2), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z, statistic for overall estimate.

APPENDIX 4

Sub-analysis of LBW when ICS was deployed in the first trimester. Number of observations = 1660. Abbreviations: 95% CI, 95% confidence interval; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; OR, odds ratio; p, p value; τ^2 , tau-squared; Test of $\theta_i = \theta_i$: Q(1), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z, statistic for overall estimate.

APPENDIX 5

Sub-analysis of LBW when ICS was deployed in the third trimester. Number of observations = 1843. Abbreviations: 95% CI, 95% confidence interval; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; OR, odds ratio; *p*, *p* value; τ^2 , tau-squared; Test of $\theta_i = \theta_i$: Q(2), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z, statistic for overall estimate.

Type of intervention compliance observed, how it was measured and reported result by intervention type.

Study	Compliance observed	Type of compliance observed	Reported compliance
ICS (Observed = 7, Not observed = 3)			
Bangladesh cookstove intervention ³³	Not reported		
India improved cookstove intervention ³⁶	Self-reported stove use— observations reported	Stove use	60% of participants reported correct usage.
RESPIRE - ICS ^{38,47}	Weekly fieldworker observations— observations not reported	Stove use and in working order	Observations not reported
Ethiopia Injera baking stove ⁴⁰	Self-report and fieldworker observations—observations not reported.	Stove use, condition of stove	Observations not reported
Guatemala ONIL stove ⁴¹	Not reported		
Peru Optima-improved stove ⁴²	Self-report and fieldworker observations – observations reported.	Stove use	90% of mother reported using the ICS.
Rwanda—ICS ⁴³	Self-report and fieldworker observations—observations reported.	Stove usage and in working order	Declining use throughout study period, with 52.5% using intervention every day by the third visit, with stove use being over reported (ref—Thomas et al. 2016 ⁶³)
Gambia—ICS and briquettes ⁴⁴	Self-report and fieldworker observations—observations reported.	Stove use and using designated duel only.	41.4% continued to use 3-stone stove
CAPS - ICS ⁴⁵	Self-report and use of stove monitors—observations reported.	Stove use	After two years, 50% reported using intervention
Mexico Patsari stove ⁴⁶	Not reported		
Ethanol cookstove (Observed = 0, Not o	bbserved = 1)		
Nigerian Ethanol cookstove ^{34,35}	Not reported		
ICS and LPG (Observed = 2, Not observed $=$ 2	red = 0)		
Nepal step-wedge ICS and LPG intervention ^{37,48}	Weekly fieldworker observations— observations reported	Stove use	Trial 1: 90% reported use of alternative stove at least once per week Trial 2: Alternative stove use was at 50%
GRAPHs ⁷⁹	Weekly fieldworker observations— observations not reported		Observations not reported

Study	Compliance observed	Type of compliance observed	e Reported compliance	
Total observed	9			
Total not observed	4			

Sub-analysis of birthweight when a reduction in HAP was observed with the intervention (ICS). Number of observations = 835. Abbreviations: 95% CI, 95% confidence interval; g, grams; l^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; MD, mean difference; p, p value; τ^2 , tau-squared; Test of $\theta_i = \theta_j$: Q(1), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z, statistic for overall estimate.

		ICS		Tradi	tional co	oking	Random-Effects	MD (g)	Weight
Study	Ν	Mean	SD	Ν	Mean	SD	Sidik-Jokman	(95% CI)	(%)
Katz et al. 2020 ³⁷	713 69	2653 2797	431 422	558 105	2630 2729	443 392		23.00 (-25.33, 71.33)	83.82
Overall	0,	2131	122	100	2,29	572		30.28 (-20.25, 80.82)	10.10
Heterogeneity: $\tau^2 = 184$.95, I ²	= 7.55%	$H^2 =$	1.08					
Test of $\theta_i = \theta_j$: Q(1) = 0	.45, p	= 0.50					Favours Control Favours Interventi	on	
Test of $\theta = 0$: $z = 1.17$,	p = 0.2	24							
						-200	-100 0 100	200	

APPENDIX 8

Sub-analysis of LBW when a reduction in HAP was observed with the intervention (ICS). Number of observations = 1525. Abbreviations: 95% CI, 95% confidence interval; I^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; OR, odds ratio; *p*, *p* value; τ^2 , tau-squared; Test of $\theta_i = \theta_i$: Q(1), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z, statistic for overall estimate.

	I	CS	Traditiona	al cooking		Random-Effects		OR	Weight
Study	Yes	No	Yes	No		Sidik-Jokman		(95% CI)	(%)
Katz et al. 2020 ³⁷	208	763	227	588				0.71 (0.57, 0.88)	91.91
Thompson et al. 2012	13	69	26	105 -				0.76 (0.37, 1.58)	8.09
Overall					-			0.71 (0.58, 0.87)	
Heterogeneity: $\tau^2 = 0.00$	$I_{1}^{2} = 0$	0.07%	$H^2 = 1.00$)					
Test of $\theta_i = \theta_j$: Q(1) = 0	.04, p	= 0.85	5			Favours Control	Favours Intervention		
Test of $\theta = 0$: $z = -3.22$,	, p = 0.	00							
				_	0.4 0.	6 0.8 1	.0 1.3 1.6	-)	

APPENDIX 9

Sub-analysis of ARI when a reduction in HAP was observed with the intervention (ICS). Number of observations = 50 192. Abbreviations: 95% CI, 95% confidence interval; I^2 , percentage variability of the effect estimates as a result of heterogeneity rather than chance; *p*, *p* value; RR, rate ratio; τ^2 , tau-squared; Test of $\theta_i = \theta_i$: Q(1), chi-squared with degrees of freedom; Test of $\theta = 0$: z = z statistic for overall estimate.

Breakdown of the results for the six components of the quality and risk of bias assessment.

			1		1		
Article	Rating for Selection bias	Rating for study design	Rating for confounders	Rating for blinding	Rating for Data collection Methods	Rating for withdrawals and dropouts	Global rating
Adane et al., 202140	MODERATE	STRONG	MODERATE	MODERATE	MODERATE	STRONG	STRONG
Alexander et al., 201734	MODERATE	STRONG	STRONG	MODERATE	MODERATE	STRONG	STRONG
Alexander et al., 201835	MODERATE	STRONG	STRONG	MODERATE	MODERATE	MODERATE	MODERATE
Amhed et al., 201533	MODERATE	MODERATE	Moderate	WEAK	WEAK	STRONG	WEAK
Hanna et al., 201736	MODERATE	STRONG	WEAK	MODERATE	WEAK	WEAK	WEAK
Harris et al., 201141	WEAK	WEAK	WEAK	MODERATE	MODERATE	MODERATE	WEAK
Hartinger et al., 201642	MODERATE	STRONG	STRONG	MODERATE	MODERATE	STRONG	STRONG
Katz et al., 202037	MODERATE	STRONG	MODERATE	MODERATE	STRONG	STRONG	STRONG
Kirby et al., 201943	MODERATE	STRONG	MODERATE	MODERATE	STRONG	STRONG	STRONG
Litchfeild 201844	STRONG	STRONG	MODERATE	MODERATE	MODERATE	STRONG	STRONG
Mortimer et al., 201745	MODERATE	STRONG	STRONG	STRONG	MODERATE	STRONG	STRONG
Schilmaan et al., 201546	MODERATE	STRONG	MODERATE	WEAK	STRONG	MODERATE	MODERATE
Smith et al., 201147	STRONG	STRONG	MODERATE	STRONG	STRONG	STRONG	STRONG
Teilsch et al., 201648	MODERATE	STRONG	WEAK	MODERATE	STRONG	MODERATE	MODERATE
Thompson <i>et al.</i> , 2011 ³⁸	MODERATE	STRONG	MODERATE	MODERATE	MODERATE	WEAK	MODERATE
Wylie 201739	MODERATE	STRONG	MODERATE	MODERATE	MODERATE	MODERATE	STRONG