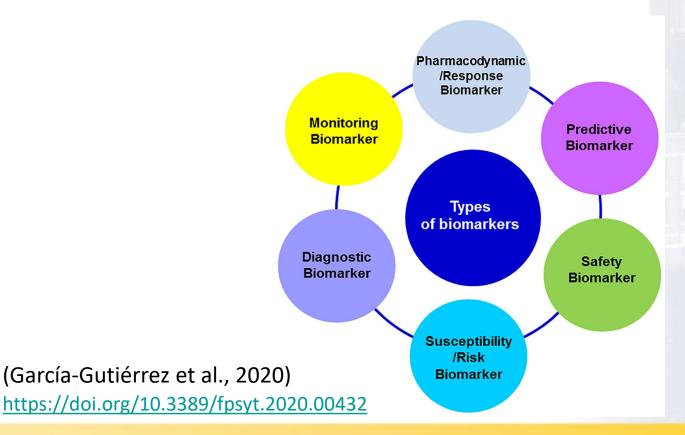

Promoting Resilience through Emerging Clinical and Evolving Determinants of Equity Biomarkers Laboratory

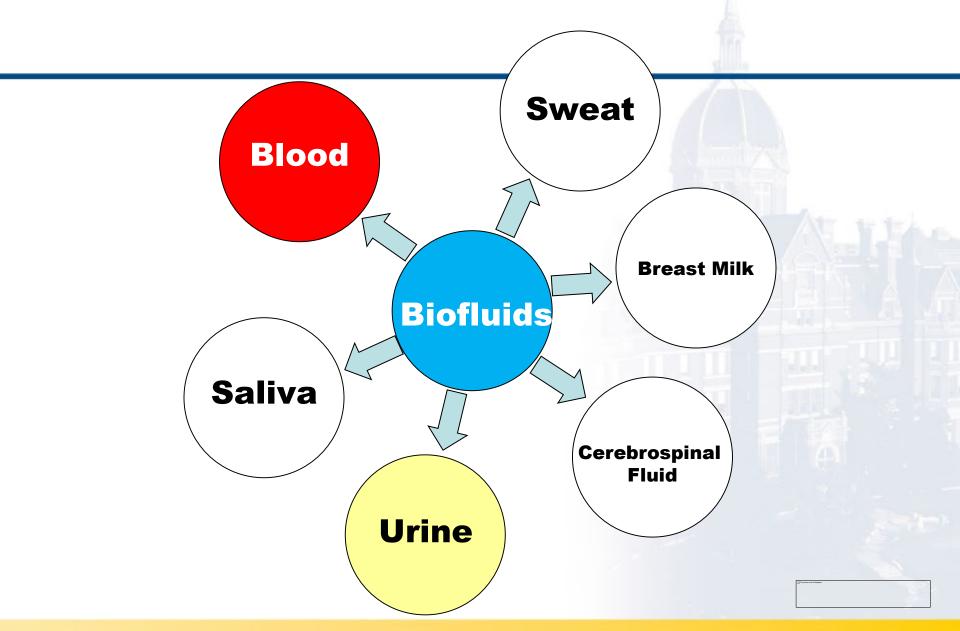
Director
of the
Clinical Translational Laboratory:
Chelsea Wagner, MS
chelseawagner@jhu.edu
(410) 502-2733

Principal Investigators:
Dr. Jessica Gill
Dr. Jennifer Wenzel
Dr. Nada Lukkahatai
Dr. Junxin Li
Dr. Melissa deCardi Hladek
Dr. Martha Abshire Saylor
Dr. Jason Farley

December 18, 2024

December 18, 2024




December 18, 2024 3

What are biomarkers?

 Biomarkers: A defined characteristic that is measured as an indicator of normal biological process, pathogenic process or response to an exposure or intervention (FDA-NIH Biomarker Working Group)

What can we measure?

Protein Quantification Instruments

Quanterix HD-X™ Automated Immunoassay Analyzer

Simoa HD-X Benefits

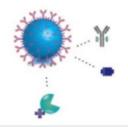
Ultra-sensitivity – Up to 1000x greater sensitivity than traditional immunoassays

Automation – Reproducibility and convenience of sample->answer workflow

Multiplexing - Measure up to 6 biomarkers in single sample at fg/ml concentrations

Flexibility – Supports both highthroughput and rapid result workflows

Efficiency – Precise control of assay conditions allows for use of stored assay calibration values

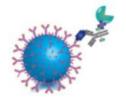

Menu – Fully compatible with 80+ assays also available on HD-1 as well as customized homebrew assays

Regulatory Compliance – Enables 21CFR Part 11 compliance with streamlined run reports and user management

96 Well Plate

Quanterix HD-X™ Automated Immunoassay Analyzer Process

Paramagnetic particles coupled with antibodies designed to bind to specific targets are added to the sample.


2

Detection antibodies – capable of generating fluorescent product – are added.

3

The objective is to form an immunocomplex consisting of the bead, bound protein, and detection antibody.

At low concentrations, each bead will contain one bound protein, or none.

Quanterix HD-X™ Automated Immunoassay Analyzer Process

5

The sample is loaded into arrays, in the Simoa disc, consisting of more than 200,000 microwells – each large enough to hold one bead.

Data analysis – results can be viewed and analyzed on the board or exported to commonly used software packages or LIMS systems.

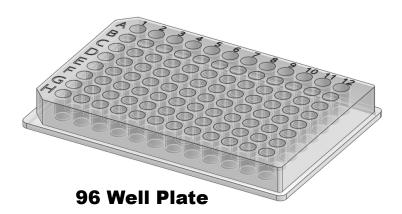
Enzymatic signal amplification with fluorescent substrate, fluorescence imaging and data reduction.

Protein Quantification Instruments

 Ultra-sensitive assay with up to 10-plex multiplexing scale and flexibility

SP-X Imaging and Analysis System™

Unleashing the power of next-generation Simoa® Planar Array technology for robust multiplex biomarker detection – even at healthy baseline levels.


1000x

Up to 1000x greater sensitivity

10 in 1

Up to 10 biomarkers in a single assay 100+

Compatible with 100+ assays

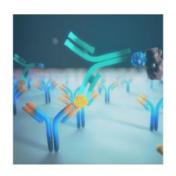
96-well plates are spotted at the factory with the target analyte(s) of interest

Quanterix SP-X™ Automated Immunoassay Analyzer Process

2

Diluted samples and standards added to each well and the plates are to create a unique surface chemistry and "vortex" effect

3


Biotinylated detection antibodies are added to form the other half of the immunocomplex "sandwich"

Quanterix SP-X™ Automated Immunoassay Analyzer Process

4

High sensitivity HRP enzyme-conjugated streptavidin is added in between additional shake cycles.

5

Finally, a chemiluminescent substrate is added just prior to ultra-sensitive CCD camera imaging, in order to measure the signal intensity produced by each spot.

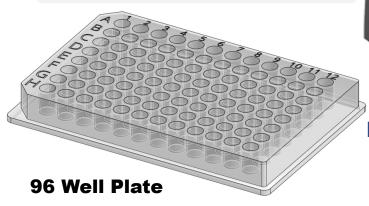
December 18, 2024 11

Protein Quantification Instruments

Utilizes a very sensitive, high-resolution CCD camera and lens system to detect light emitted from MULTI-ARRAY® and MULTI-SPOT® plates.

The custom-designed lens enables highly efficient and uniform collection of electrochemiluminescen ce (ECL) generated light.

Broad Assay Menu

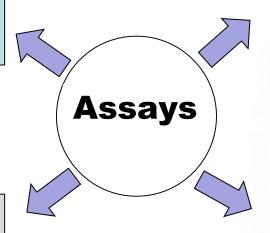

- Large menu of commercially available kits
- Full line of components for user-developed assays
- Access to all product lines for MSD[®] consumables

Flexibility

- Single and multiplex assays
- Compatible with all SECTORTM and QuickPlex® products
- Special pricing for academic customers

Validated

- Developed under design control
- Microsoft Windows 10 compatible
- Simple, fast, and secure data analysis with DISCOVERY WORKBENCH® software


MESO QuickPlex SQ 120MM

Meso Scale Discovery Technology

What can we measure?

Neurology

- Phosphorylated tau (i.e., 181, 231)
- Total Tau
- Neurofilament Light (NfL)
- Amyloid Beta (40, 42)
- Glial Fibrillary Acidic Protein (GFAP)

Immunology/Inflammation

- C-reactive protein (CRP)
- Cytokines Panel (TNF-alpha, IL-6, IL-10, IL-8, IL-1beta)
- VEGF

Oncology

- Programmed cell death protein1 (PD-1 or CD279)
- Angiogenesis Factor Panel 1 (ANG-2, FGFB, HB-EGF, HGF, PLGF, VEGF)
- Osteopontin (OPN

Cardiology

- Troponin I
- Troponin T
- Myosin binding protein C
- Heart-type fatty acid binding protein

Olink Technology

Olink Explore HT

Olink technology is a high-throughput proteomics platform that uses Proximity Extension Assay (PEA) technology to enable precise, multiplex protein biomarker analysis. By employing dual antibody binding and DNA-based detection, it offers high specificity and sensitivity, even in complex biological samples like plasma and serum. Olink's applications span biomarker discovery, disease mechanism studies, and therapeutic development, with a focus on gaining insights into areas such as oncology, neurology, cardiovascular, and immunology. Its quantitative, reproducible data empowers researchers to identify and validate protein signatures across diverse disease states, advancing precision medicine and translational research.

Olink Signature Q100- uses up to 92 carefully selected proteins across 88 samples, using just 1 μ L of serum, plasma, or almost any other type of biological sample, which helps bring new insights into disease processes, improve disease detection and contribute to a better understanding of biology. Each biomarker is addressed by a matched pair of antibodies, coupled to unique, partially complementary oligonucleotides, and measured by quantitative real-time PCR. This dual recognition, DNA-coupled method provides exceptional readout specificity, since unlike in many other immunoassay formats, any antibody cross-reactivity that may occur during the multiplexed assay is excluded from the detection process. Exclusive features of protein analysis using Olink® Signature Q100 together with Olink® Target, Flex, and Focus panels.

December 18, 2024 14

Nucleic Acid Quantification Instruments

nCounter Pro Analysis System

nanostring.com

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

800+ targets (messenger RNA and microRNA)

Nucleic Acid Quantification Instruments

Panel Selection Neuropathology 10360 **Human Organ** Stem Cell Transplant Cell & Gene Therapy ADC Development **Host Response** CAR-T

Exosome Equipment

-Isolating exosomes from biological fluid, and an anti-body pull down of brain specific exosomes, microglial, and astrocyte

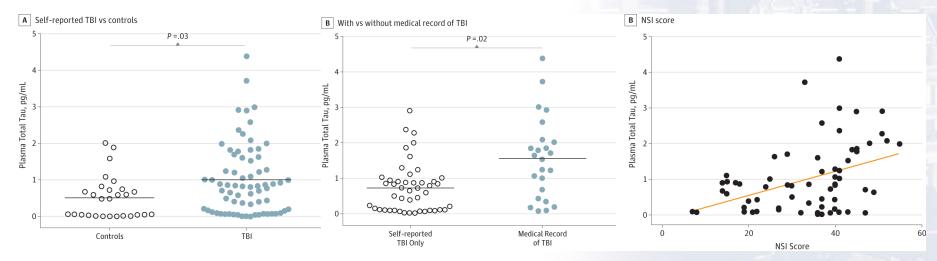
Evaluate using ExoView™ R200 and LabSpinner platforms:

-ExoView™ R200 pulls together fluorescence imaging and single particle interferometry to provide complete characterization of exosomes at the singleparticle level

-LabSpinner ExoDiscovery instrument utilizes the lab on a chip into a lab on a disc

miniaturized microfluidics into an

automated fashion


December 18, 2024

Scientific Publications

Original Investigation

Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment

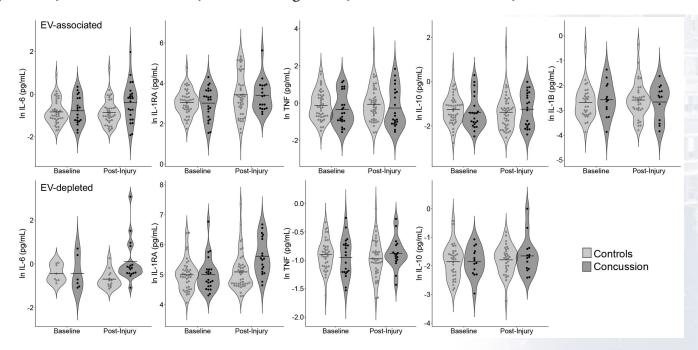
Anlys Olivera, PhD; Natasha Lejbman, BS; Andreas Jeromin, PhD; Louis M. French, PsyD; Hyung-Suk Kim, PhD; Ann Cashion, PhD; Vincent Mysliwiec, MD; Ramon Diaz-Arrastia, MD, PhD; Jessica Gill, RN, PhD

Postconcussive Disorder Symptoms

ELSEVIER

Contents lists available at ScienceDirect

Brain Behavior and Immunity


journal homepage: www.elsevier.com/locate/ybrbi

Extracellular vesicle-associated cytokines in sport-related concussion

Timothy B. Meier ^{a,b,c,1,*}, Vivian A. Guedes ^{d,1}, Ethan G. Smith ^d, Dilorom Sass ^d, Sara Mithani ^d, Rany Vorn ^d, Jonathan Savitz ^{e,f}, T. Kent Teague ^{g,h,i}, Michael A. McCrea ^{a,j}, Jessica M. Gill ^d

Article

Exosomal microRNA Differential Expression in Plasma of Young Adults with Chronic Mild Traumatic Brain Injury and Healthy Control

Rany Vorn ¹, Maiko Suarez ², Jacob C. White ³, Carina A. Martin ¹, Hyung-Suk Kim ¹, Chen Lai ¹, Si-Jung Yun ⁴, Jessica M. Gill ^{5,6} and Hyunhwa Lee ^{7,*}

- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20814, USA; rany.vorn@nih.gov (R.V.); carina.martin@nih.gov (C.A.M.); kimhy@mail.nih.gov (H.-S.K.); laichi@mail.nih.gov (C.L.)
- School of Medicine, University of Nevada, Las Vegas, NV 89102, USA; suarem2@unlv.nevada.edu
- ³ College of Liberal Arts, University of Nevada, Las Vegas, NV 89154, USA; whitej31@unlv.nevada.edu
- 4 Yotta Biomed, LLC, Bethesda, MD 20817, USA; sijungyun@yottabiomed.com
- School of Nursing and Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; JessicaGill@jhu.edu
- 6 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Science, Bethesda, MD 20814, USA
- School of Nursing, University of Nevada, Las Vegas, NV 89154, USA
- * Correspondence: hyunhwa.lee@unlv.edu

Extracellular Vesicle Proteins and MicroRNAs Are Linked to Chronic Post-Traumatic Stress Disorder Symptoms in Service Members and Veterans With Mild Traumatic Brain Injury

OPEN ACCESS

Edited by:

Stefania Mondello, University of Messina, Italy

Reviewed by:

Eric Peter Thelin, Karolinska Institutet (KI), Sweden Ralph George Depalma, United States Department of Veterans Affairs. United States Vivian A. Guedes¹, Chen Lai¹, Christina Devoto^{1,2}, Katie A. Edwards¹, Sara Mithani¹, Dilorom Sass¹, Rany Vorn¹, Bao-Xi Qu^{1,3}, Heather L. Rusch^{1,2,4}, Carina A. Martin¹, William C. Walker⁵, Elisabeth A. Wilde⁶, Ramon Diaz-Arrastia⁷, Jessica M. Gill^{8,9} and Kimbra Kenney^{8,10}*

¹Tissue Injury Branch, National Institutes of Nursing Research, National Institutes of Health, Bethesda, MD, United States, ²Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, United States, ³Center for Neuroscience and Rehabilitation Medicine, Uniformed Services University of the Health Sciences and National Institutes of Health, Bethesda, MD, United States, ⁴Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States, ⁵Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, United States, ⁶CENC Neuroimaging Core, George E. Wahlen VA Salt Lake City Healthcare System and Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States, ⁷Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States, ⁸CENC Biorepository, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, ⁹Johns Hopkins University School of Nursing and Medicine, Baltimore, MD, United States, ¹⁰Department of Neurology, Uniformed Services University of the Health Sciences,