Enhancing Access to Digital Diabetes Self-Management Education & Support: A Quality Improvement Project in a Free Clinic

Hannah Parks, BSN, RN; Deborah Busch, DNP, CRNP, IBCLC, CNE, Jennifer Tarleton, BSN, RN

Background

Introduction

- In the U.S., 37.3 million adults (11.3%) live with diabetes and, in 2017, it was the 7th leading cause of death in the U.S.¹⁻³
- Communities in Appalachia have heightened diabetes risk and prevalence 1.4 times greater than those outside the region.^{4, 5}
- A Hemoglobin A1C of less than 7%, reduces disease burden, physiologic complications, and health care costs.^{6, 7}

Background

- Diabetes Self-Management Education and Support (DSMES) reduces allcause mortality risk, improves quality of life, and can reduce A1C.6,8,9
- National standards recommend DSMES at time of diagnosis, annually or when not meeting targets, and with complications or transitions in care.⁶
- DSMES is underutilized in disease management, especially in low-income populations. 10

Purpose & Aims

Purpose: To develop, implement, and evaluate the effects of an educational bundle delivered via social media on the AADE 7 Self-Care Behaviors©¹¹ for individuals with T2DM at a free clinic in North Carolina.

Aims:

- 1) Deliver an educational bundle based on the AADE7 Self-Care Behaviors© to the project site for dissemination to its patients with T2DM via a private Facebook group over an 8-week period in Fall 2021, as measured by implementation of 7 educational modules.
- 2) Evaluate the efficacy of the educational bundle through patient assessment of their diabetes self-management, as measured by a pre-intervention survey at week 1 and a post-intervention survey at week 12 using the Diabetes Self-Management Questionnaire (DSMQ©).¹²
- 3) Evaluate the efficacy of the educational bundle through patient self-report of their most recent Hemoglobin A1C as measured by a pre-intervention survey at week 1 and a post-intervention survey at week 12.

Methods

Design Pre/Post-intervention Quality Improvement Project Setting Independent free clinic in Appalachia

Measurement Pre/Post-intervention patient self-evaluations at weeks 1 and 12

- Diabetes Self-Management Questionnaire ©: Validated 16 statement Likert scale questionnaire; scored on 10-point scale
- Hemoglobin A1C

Learning Data Set Sample

Demographic characteristics	(N=44)	
Age, mean (SD)	51 (7.55)	
Range,	35-64	
Sex, n (%)		
Male	18 (40.9)	
Female	26 (59.1)	
Race, n (%)		
White	39 (88.6)	
Black/African American	5 (11.4)	
Ethnicity, n (%)		
Hispanic	8 (18.2)	
Non-Hispanic	36 (81.8)	
SD=standard deviation		

Discussion

- The intervention had positive, statistically significant impact on participants' diabetes self-management. **
- Increased self-management improves patients' overall quality life.
- The intervention had positive, statistically significant impact on participants' glycemic control. **
- A1C reduction was comparable to many oral anti-diabetic medications¹³ and demonstrates clinically significant progress and reduced mortality risk.
- Patients found the educational bundle informative, identifying the exercise, healthy eating, and problem-solving tips within the bundle to be most helpful. **data analysis with a learning data set

Results

 A paired sample t-test found that the difference between scores (1.4) was significant (p<0.001).**

 A Wilcoxon signed rank test found that the difference between A1Cs (-0.9%) was significant (p<0.001). **

**data analysis conducted with a learning data set

Limitations

- Low participant enrollment at the project site resulted in the use of a learning data set.
- A learning data set served as a proxy for real participant data; the project's reported outcomes cannot be equated with actual patient outcomes.
- Intervention was limited to eight weeks of DSMES. Optimal patient outcomes occur with at least 10 hours of DSMES over 6-12 months.

Conclusions

- This project mirrors the expanding integration of technology into diabetes care.
- Digital DSMES in low-income populations is both feasible and potentially beneficial.

Areas for future investigation:

- Subscale analysis of individual self-management behaviors within the DSMQ© to promote subsequent improvement of the educational bundle.
- Qualitative investigation into participants' perceptions of digital DSMES to illumine barriers and benefits to successful programs within low-income populations.

1. Centers for Disease Control and Prevention. (2022). National Diabetes Statistics Report. https://www.cdc.gov/diabetes/data/statistics-report/index.html

- 2. Heron, M. (2019). Deaths: Leading causes for 2017. National Vital Statistics Reports, 68(6), 1-77, https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf
- 3. Centers for Disease Control and Prevention. (2019). *Diabetes Report Card-2019*. Diabetes Report Card-2019. https://www.cdc.gov/diabetes/library/reports/ reportcard.html
- 4. Centers for Disease Control and Prevention. (2017). Appalachian diabetes control and prevention project. https://bit.ly/2ZEFzin 5. Centers for Disease Control and Prevention. (2020). National Diabetes Statistics Report. https://www.cdc.gov/diabetes/pdfs/data/statistics/ national-diabetes-statistics-report.pdf
- 6. American Diabetes Association. (2022). Standards of medical care in diabetes-2022. Diabetes Care, 45 (Suppl. 1). https://diabetesjournals.org/care/issue/45/Supplement_1
- 7. Fitch, K., Pyenson, B., & Iwasaki, K. (2013). Medical claim cost impact of improved diabetes control for Medicare and commercially insured patients with type 2 diabetes. Journal of Managed Care Pharmacy, 19(8), 609-620d. https://www.doi.org/10.18553/jmcp.2013.19.8.609
- 8. Steinsbekk, A., Rygg, L., Lisulo, M., Rise, M. B., & Fretheim, A. (2012). Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with type 2 diabetes self-management education compared to routine treatment for people with the routine treatment education compared to 9. Tshiananga, J. K. T., Kocher, S., Weber, C., Erny-Albrecht, K., & Neeser, K. (2011). The Effect of Nurse-led Diabetes Self-management Education on Glycosylated Hemoglobin and Cardiovascular Risk Factors. The Diabetes Educator, 38(1), 108–123. https://doi.org/10.1177/0145721711423978
- 10. National Association of Chronic Disease Directors. (2019, April). Establishing and Operationalizing Medicaid Coverage of Diabetes Self-Management Education and Support: A Resource Guide for State Medicaid and Public Health Agencies. https://chronicdisease.org/resource/resmgr/website2019/diabetesselfmanagementeducat.pdf 11. Adapted from the AADE7 Self-Care Behaviors© (2020). Reproduced with permission of the Association of Diabetes Care & Education Specialists (Appendix A). All rights reserved. May not be reproduced or distributed without the written approval of ADCES. 12. Reproduced with permission. DSMQ © Dr Andreas Schmitt, 2013
- 13. Sherifali, D., Nerenberg, K., Pullenayegum, E., Cheng, J. E., & Gerstein, H. C. (2010). The Effect of Oral Antidiabetic Agents on A1C Levels. Diabetes Care, 33(8), 1859–1864. https://doi.org/10.2337/dc09-1727