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ABSTRACT

Life sciences researchers using artificial intelligence (AI) are under pressure to innovate faster than ever.

Large, multilevel, and integrated data sets offer the promise of unlocking novel insights and accelerating

breakthroughs. Although more data are available than ever, only a fraction is being curated, integrated,

understood, and analyzed. AI focuses on how computers learn from data and mimic human thought pro-

cesses. AI increases learning capacity and provides decision support system at scales that are transforming

the future of health care. This article is a review of applications for machine learning in health care with a

focus on clinical, translational, and public health applications with an overview of the important role of

privacy, data sharing, and genetic information.

� 2019 Elsevier Inc. All rights reserved. � The American Journal of Medicine (2019) 132:795−801
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INTRODUCTION
Machine learning, a popular subdiscipline of artificial intel-

ligence (AI), uses large data sets and identifies interaction

patterns among variables. These techniques can discover

previously unknown associations, generate novel hypothe-

ses, and drive researchers and resources toward most fruit-

ful directions.1 Machine learning can be applied in various

fields, such as financial, automatic driving, smart home,

etc. In medicine, machine learning is widely used to build

automated clinical decision systems.
work was in part supported by Geisinger Research, and

the National Institute of Health (NIH) grant No.

Sutter Health and sub-awarded to VA (Sub-PI, Gei-

s funds from the Defense Threat Reduction Agency

HDTRA1-18-1-0008 to Virginia Tech and sub-awarded

eisinger, sub-award No. 450557-19D03). The funders

y design, data collection and interpretation, or the deci-

work for publication.

terest: None.

ll authors had access to the data and a role in writing

eprints should be addressed to Vida Abedi, PhD, Staff

ical and Translational Informatics Institute at Geisinger

0 N Academy Ave, Danville, PA 17822.

es: vidaabedi@gmail.com, vabedi@geisinger.edu

Elsevier Inc. All rights reserved.

1016/j.amjmed.2019.01.017
Most approaches to machine learning fall into two main

categories: supervised and unsupervised. Supervised meth-

ods are great for classification and regression. Recent exam-

ples include detection of a lung nodule from a chest X-ray2;

risk estimation models of anticoagulation therapy;3 implan-

tation of automated defibrillators in cardiomyopathy;4 use

in classification of stroke and stroke mimic;5 modeling of

CD4+ T cell heterogeneity;6 outcome prediction in infec-

tious diseases;7 detection of arrhythmia in electrocardio-

gram (ECG);8 and design and development of in silico

clinical trial9 among others.

Unsupervised learning does not require labeled data. It

aims to identify hidden patterns present in the data and is

often used in data exploration and in the generation of novel

hypotheses.2 In three separate studies in heart failure with

preserved ejection fraction among patients who had a het-

erogeneous condition with no proven therapies without

human intervention,10 researchers used unsupervised learn-

ing2 to revisit failed clinical trials such as treatment with

spironolactone,11 enalapril,12 and sildenafil13 compared

with placebo to identify a subclass of patients who might

benefit from specific therapies.

There are other algorithms, such as reinforcement learn-

ing, which can be viewed as a combination of supervised
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and unsupervised learning to maximize the accuracy of

using trial and error14 (Table 1).

Deep learning is a subset of machine learning that

mimics the operation of the human brain using multiple

layers of artificial neuronal networks to generate automated

predictions from training data sets. Models based on deep

learning strategy tend to have multiple parameters and
CLINICAL SIGNIFICANCE

� Artificial intelligence (AI) increases
learning capacity and provides deci-
sion support system at scales that are
transforming the future of health care.

� Artificial intelligence has been imple-
mented in disease diagnosis and prog-
nosis, treatment optimization and
outcome prediction, drug develop-
ment, and public health.

� Technological advances require collect-
ing and sharing the massive amount of
data and thus generate concerns
about privacy.
layers; thus, model overfitting could

lead to poor predictive perfor-

mance. Increasing the training sam-

ple size, decreasing the number of

hidden layers, and ensuring the data

is well-balanced can help prevent

overfitting. Overall, deep learning

is compelling in image recogni-

tion15 and in modeling disease

onset16 using temporal relations

among events. A deep neural net-

work was trained on more than

37,000 head computed tomography

(CT) scans for intracranial hemor-

rhage and subsequently evaluated

on 9,500 unseen cases, reducing

time to diagnosis of new outpatient

intracranial hemorrhage by 96%

with an accuracy of 84%.17

Cognitive computing as a subset
of AI involves self-learning systems using pattern recogni-

tion and natural language processing for semi- or unstruc-

tured data. Cognitive computing mimics the operation of

human thought processes, with the goal of creating auto-

mated computerized models that can solve problems with-

out human assistance. Examples include research in

computer-brain-interface18,19 and commercial products

such as the IBMWatson.20
Table 1 Main Machine-Learning Strategies: Their Characteristics, Scop

ML types Algorithms Description Charact

Supervised Learning Labeled data set
System trained with human
feedback

Applica
sion,
disea
Mode
ral Ne
(SVM

Unsupervised Learning Non-labeled data by humans Applica
tion;
nisms
genot
algor
meth

Reinforcement Learning Hybrid approach; the goal is to max-
imize accuracy by trial and error;
especially useful in a complex
environment

Applica
game
cluste

ML = machine learning.
Although none of these approaches can rapidly and

simultaneously consider different disease-related param-

eters in a user-independent fashion, they are promising

venues and are changing the way medicine is practiced.

Health care providers should be ready for the upcoming

AI age and embrace the added capabilities that would

lead to more efficient and effective care. In this article,
e, and Limitations

eristics

tions include classificatio
and prediction; ideal for m
se prognosis or treatment
ling algorithms include Ar
twork (ANN), Support Vec
), Random Forest (RF)
tions include mainly patte
ideal for modeling disease
, identifying hidden patte
ype or phenotype data. M
ithms include various clust
ods
tions include chemistry, r
s, resource management in
rs, personalized recomme
we review the applications and

challenges as well as ethical con-

sideration and perspectives of

machine learning in medicine,

translational research, and public

health (Table 2).

CLINICAL APPLICATION

Disease Prediction and
Diagnosis
Despite the increasing application

of AI in health care, the research

mainly concentrates around cancer,

nervous system, and cardiovascular

diseases because they are the

leading causes of disability and

mortality. However, infectious and

chronic diseases (eg, type 2 diabe-

tes,21 inflammatory bowel dis-
ease,22 Clostridium difficile infection9) have also been

getting considerable attention. Early diagnosis can now be

achieved for many conditions by improving the extraction

of clinical insight and feeding such insight into a well-

trained and validated system.23 For instance, the US Food

and Drug Administration (FDA) permitted applying of

diagnosis software designed to detect wrist fractures in

adult patients.24 In another study on 1,634 images of
Limitation

n, regres-
odeling
outcome.
tificial Neu-
tor Machine

Requires a large amount of
labeled data for train-
ing; need validation in
an independent cohort.

rn recogni-
mecha-
rns in
odeling
ering

Needs validation in sev-
eral independent
cohorts

obotics,
computer

ndations

Memory intensive



Table 2 Selected Areas in Medicine Where Machine Learning
Has High Potential and Implications

Field Application

Clinical Disease prediction and diagnosis
Treatment effectiveness and outcome prediction

Translation Drug discovery and repurposing
(In Silico) Clinical trial

Public health Epidemic outbreak prediction
Precision health
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cancerous and healthy lung tissue, the algorithm identified

healthy cases and distinguished, as accurately as 3 patholo-

gists, between 2 common types of lung cancer.25 In the

United States, more than 6% of adult populations are

affected by depression. Predicting major depressive disor-

der was 74% accurate by image heatmap pattern

recognition.26

Several studies are looking at the potential of AI in

timely and precise diagnosis of disease. Supervised

methods are effective tools at capturing nonlinear rela-

tionships for complex and multifactorial disease classifi-

cation. In a cohort study of 260 patients, Abedi et al27

found that the model can better diagnose acute cerebral

ischemia than trained emergency medical respondents.

Although noisy data and experimental limitations reduce

the clinical utility of the models, deep learning methods

can address these limitations by reducing the dimension-

ality of the data through layered auto-encoding analyses.

Examples include analysis of more than 1,400 images

from 308 histopathology region of skin to detect basal

cell carcinoma and differentiate malignant from benign

lesions, achieving a diagnostic accuracy of >90% com-

pared with experts28; or examination of more than

41,000 digital-screening breast mammograms for identi-

fying dense or non-dense breast tissue, where 94% of

the 10,763 deep learning assessments were accepted by

the interpreting radiologist.29
Treatment Effectiveness and Outcome
Prediction
Treatment effectiveness and outcome prediction are

also important areas with the potential clinical implica-

tion in disease-management strategies and personalized

care plans. A decade ago, only molecular and clinical

information was exploited to predict cancer outcomes.

With the development of high-throughput technologies,

including genomic, proteomic, and imaging technolo-

gies, new types of input parameters have been col-

lected and used for prediction. With a large sample

size and integrated multimodal data types, including

histological or pathological assessments,30 these meth-

ods could considerably (15%-25%) improve the accu-

racy of cancer susceptibility, outcome prediction, and

prognosis.31
Electronic health records (EHRs) are effective tools for

documenting and sharing health care information. Integrat-

ing machine learning-based modeling designed specifically

for administrative data sets can facilitate the detection of

potential complications, improve health care resource utili-

zation, and outcomes at a personalized level.32,33 Utiliza-

tion of machine learning applied to EHR data has been

shown to predict outcome in patients with sepsis.7 A large-

scale mortality study based on machine learning in more

than 170,000 patients with 331,317 echocardiographies by

Samad et al34 achieved 96% accuracy to predict patients’

survival based on echocardiography combined with EHR

data. In terms of algorithm improvement, Smith et al35

developed a deep neural network model for 12-lead ECG

analysis and compared it to the conventional algorithm in

emergency department ECGs; their result showed an accu-

racy of 92% for finding a major abnormality.

AI analytics can be used in chronic disease management

characterized by multi-organ involvement, acute variable

events, and long illness progression latencies. For instance,

retinopathy can be predicted using machine learning. Train-

ing 2 validation data sets using deep learning to detect and

grade diabetic retinopathy and macular edema achieved a

high specificity and sensitivity for detecting moderately

severe retinopathy and macular edema after each image

was graded by ophthalmologists between 3 and 7 times.36

To improve care in congestive heart failure, a study used

supervised machine learning on 46 clinical variables from

397 patients with heart failure with preserved ejection frac-

tion. Phenotypic heatmap predicted patient survival more

accurately than commonly employed risk assessment

tools.2

One of the goals of precision medicine in cancer is the

accurate prediction of optimal drug therapies from the

genomic data of individual patient tumors.37 In a study,

researchers presented an open-access algorithm for the pre-

dictive response of cancers to 7 common chemotherapeutic

medications.38 Precision medicine success depends on

algorithm ability to translate large compendia of -omics

data into clinically actionable predictions. For example,

Costello et al39 analyzed 44 drug sensitivity prediction

algorithms on 53 breast cancer cell lines with available

genomic information to fulfill dose-response values of

growth inhibition for each cell line exposed to 28 therapeu-

tic compounds.
TRANSLATION APPLICATION

Drug Discovery and Repurposing
About 25% of all discovered drugs were the result of a

chance when different domains were brought together acci-

dentally.40 Targeted drug discovery is preferred in pharma-

ceuticals because of the explicit mechanism, higher success

rate, and lower cost when compared to traditional blind

screening. Machine learning is now used in the process of

drug discovery due to high costs of drug development,
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increasing availability of 3-dimensional structural informa-

tion that can guide the characterization of drug targets, and

extremely low success rates in clinical trials.41 Machine

learning can be used as a bridge to achieve cross-domain

linkage. It can identify a newly approved drug by recogniz-

ing contextual clues like a discussion of its indication or

side effects.20

Despite these novel approaches in drug discovery, there

are important challenges, including data access and that in

general, different data sets are stored in a variety of reposi-

tories. Furthermore, raw data from clinical trials and other

preclinical studies are typically not available. However,

overall, AI has been successful when applied to available

sources, including the use of drug information to extract

insight about mechanism-of-action by applying techniques

such as similarity metrics across all diseases to find shared

pathways.20 Another example includes the use of natural-

language processing for identification of hidden or

novel associations that might be important in the detection

of potential adverse drug effects based on scientific

publications.42
Clinical Trial and in Silico Clinical Trials
Clinical trial design has its roots in classical experimental

design. However, the clinical investigators are not able to

control various sources of variability. Ethical issues are par-

amount in clinical research. Subject enrollment can become

lengthy and costly.43,44

The machine-learning approach using in silico data set

was introduced to describe the numerical methods used in

drug development in oncology by modeling biological sys-

tems in the setting of clinical trial studies and hospital

databases, paving the way to predictive, preventive, person-

alized, and participatory medicine.45 This approach gives

the researchers the ability to partially replace animals or

humans in a clinical trial and generates virtual patients with

specific characteristics to enhance the outcome of such

studies. These methods are especially helpful for pediatric

or orphan disease trials and can be applied in pharmacoki-

netics and pharmacodynamics from the preclinical phase to

post-marketing.45,46 In a study, a large in silico randomized,

placebo-controlled Phase III clinical trial study was

designed in which investigators used virtual treatments on

synthetic patients with Crohn disease. Results showed a

positive correlation between the initial disease activity

score and the drop in the disease activity score but with dif-

ferent medications’ efficacy.47 The model did not highly

score the investigational drug GED-0301; this prediction

was further validated when the company that was running

the clinical trial on GED-0301 stopped the trial after it

failed to clear an interim futility review.48 In silico clinical

trials can have considerable potentials in design and discov-

ery phases of biomedical product, biomarker identification,

dosing optimization, or the duration of the proposed

intervention.49
PUBLIC HEALTH RELEVANCE

Epidemic Outbreak Prediction
The infectious disease distribution pattern between popula-

tion groups with known probabilities are based on prior

knowledge of ecological and biological features of the envi-

ronment. Early prediction of the epidemic (such as peak

and duration of infection) is possible if model parameters

are partially known.50 Potential outbreak areas for filovi-

ruses were predicted in the west, southwest, and central

parts of Uganda, which were related to bat distribution and

previous outbreaks areas.51 In another study, Kesorn et al52

predicted the morbidity rate of dengue hemorrhagic fever

in central Thailand by estimating the infection rate in the

female Aedes aegypti larvae mosquitoes and achieved a

prediction accuracy of >95% and 88%, respectively, in the

training and test set.
Precision Health
Genetic and biomedical studies have continued investiga-

tion efforts with the goal of revealing connections between

genes and human traits or diseases. Regularized logistic

regression is an important tool for related applications.

Many studies rely on large-scale sensitive genotype or phe-

notype data, and sharing across institutions is paramount

for the success of such studies.53

There are many such examples in recent years. For

instance, in a recent case-control study with limited sample

size, researchers developed an algorithm to integrate per-

sonal whole genome sequencing and EHR data and used

this algorithm to study abdominal aortic aneurysm. They

assessed the effectiveness of modifying personal lifestyles,

given personal genome baselines, which demonstrated the

model’s utility as a personal health management model.

Such studies have the potential to shed lights on the biologi-

cal architecture of other complex diseases.54 In a recent

review, Torkamani et al55 examine the core disciplines that

enable high-definition medicine, given our recent techno-

logical advances and high-resolution data.

Challenges and Perspectives. Machine learning’s ulti-

mate goal is to develop algorithms that are capable of self-

improving with experience and continuously learning from

new data and insights and to find answers to an array of

questions. The compelling opportunities in precision medi-

cine offered by complex algorithms are accompanied by

computational challenges. In 2012, the Obama administra-

tion announced “Big Data Research and Development Ini-

tiative” investment to “help solve some of the Nation’s

most pressing challenges.”56 The achievement of this

potential requires novel approaches to address at least 3

technical challenges:57 volume, which is the scale of data

inputs, outputs, and attributes—this challenge can be

addressed in part by using clusters of CPUs, data-sharing

system or cloud, and deep-learning methods; variety, which

is the different formats of data (ie, image, video, and text)—
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this challenge can be partially addressed by using novel

deep-learning methods to integrated data from various sour-

ces; and velocity, which is the speed of streaming data— to

address this challenge, online learning approaches can be

developed.

The ethical challenges presented by data science have

also been an area of debate. These challenges can be

mapped within the conceptual space and described by 3

branches of research: the ethics of data and privacy, the

ethics and morality of algorithms, and the ethics and values

of practices.58 Among those, privacy has been the center of

attention. Privacy is defined as a fundamental human right

in the Universal Declaration of Human Rights at the 1948

United Nations General Assembly. Machine learning plays

a key role in the development of precision medicine,

whereby treatment is customized to the clinical or genetic

risk factors of the patient. These advances require collect-

ing and sharing a massive amount of data and, thus, gener-

ate concern about privacy.59

At the same time, health care institutions need to com-

municate with the public and collaborate with scientific

communities and government agencies.60 In this situation,

a privacy-preserving framework is necessary and should be

applied to a large range of domains in which the privacy

and confidentiality of study participants and institutions is

of concern.61 As a standard practice, many institutions col-

laborate and use the deidentification process to share clini-

cal data or perform a meta-analysis; each contributing site

performs an analysis in house. These processes reduce the

scope of clinical data sharing. For example, the DNAnexus

clinical trial solution service powers the US Food and Drug

Administration’s platform for advancing regulatory stand-

ards.62 St. Jude Cloud is a data-sharing resource for the

global research community.63 eMERGE is a national net-

work organized and funded by the National Human

Genome Research Institute (NHGRI) that combines DNA

biorepositories with electronic medical record (EMR) sys-

tems for large-scale, high-throughput genetic research in

support of implementing genomic medicine.64 In Europe,

the UK Biobank is a national and international health

resource with unparalleled research opportunities and is

open to all bona fide health researchers.65

The most important issue when developing machine

learning in a clinical setting is the issue of trust when both

clinicians and patients accept the recommendations pro-

vided by the system.66 The data is noisy, complex, high-

dimensional with thousands of variables, and biased for the

catchment area of the originating hospital systems where

the model was trained. Furthermore, missing data is not at

random. Missingness can be to the result of incompleteness,

inconsistency, or inaccuracy.67,68 Imputation, or predicting

missing values, also has its unique challenges. Standardized

techniques such as the MICE algorithm69 or novel imputa-

tion methods70 have been proposed. Other challenges in

mining the EHR data include different protocols and

changes that are introduced at various time periods, without

documentation for the research team, and policy changes
and reimbursement rules that are introduced that may affect

how patients seek care and how the treatment is redesigned

based on their needs and their insurance coverage. There-

fore, to develop models using EHR, the researchers must

work closely with care providers and others within the

health care system to increase the predictive power of the

modeling-enabled discoveries.

Other limitations are lack of interoperability across tech-

nology platforms over time, and massive expansion of

structured and unstructured data elements. Natural-lan-

guage processing can be used to process and contextualize

different medical words and expressions.71 However,

robust infrastructures have to be in place to be able to han-

dle a large number of clinical notes. For instance, it is possi-

ble to use robust infrastructure to process millions of notes

and identify patients who need a follow-up appointment for

preventive care in hospital settings.72

Today’s approaches to machine learning are near to real-

world conditions. Due to the rapid technological advance-

ments, tasks previously limited to humans will be taken on

by algorithms.73 The ability of machine learning to trans-

form data into insight will affect the field of medicine, dis-

placing much of the work of radiologists and anatomical

pathologists. However, clinical medicine has always

required doctors to handle huge amounts of data, from his-

tory and physical examinations to laboratory and imaging

studies and, now, genetic data. The ability to manage this

complexity has always set good doctors apart.74
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