Training Nurse Practitioner Mentors to Improve New Graduate Retention

Carissa Bragdon, MSN, ACNP, CNE
Johns Hopkins School of Nursing
NR.210.889 Project Evaluation and Dissemination
Project Advisors: Dr. Rita D’Aoust, PhD, MS, RN, CNE, FAAN, FNAP, ACNP, ANP-BC, FAAN
& Dr. Deborah Baker, DNP, CRNP, NEA-BC
Assignment Due Date: 4/9/2023
Abstract

**Background and Purpose:** New graduate Nurse Practitioners (NP) frequently experience anxiety and imposter syndrome during their first year of practice as they transition from a student to a provider. These stressors may result in low job satisfaction and high attrition. Mentorship, especially when incorporated into a Transition to Practice program, addresses these stressors, thus improving the new graduates’ job satisfaction and retention. Trained mentors are more likely to successfully guide new graduates through their first year of practice; however, many NP mentors do not receive formal mentor training to succeed and be effective in the mentor role. Simulation is an effective tool for teaching essential mentorship skills, such as communication. The purpose of this scholarly research project was to implement a simulation-based mentor training program teaching the essential mentorship skill of feedback delivery to improve the confidence and skill of the NP mentor.

**Methods:** This project was completed in a moderated-sized community hospital in the North East of the United States. This project utilized a prospective pretest/posttest design. The intervention was a simulation-based mentor training teaching a method of feedback delivery. A validated pre- and post-intervention survey was administered to measure subjective mentor skill, and an additional validated post-intervention survey was administered to measure mentor confidence.

**Results:** A total of eight NPs meeting the inclusion criteria participated in this project. There was no participant attrition and no missing survey data. There was a statistically significant improvement in mentor skills post-intervention. Additionally, on average, participants felt highly confident in their mentor skills post-intervention.

**Conclusion and Implications:** This study suggests that providing simulation-based training to experienced NPs who mentor new graduate NPs improves their skill and confidence when performing essential mentor skills, such as delivering feedback. Providing training to NP mentors can increase their effectiveness in the mentor role, thus positively impacting new graduate NP retention and job satisfaction.

**Keywords:** NP, mentorship, new graduate, Transition to Practice, feedback delivery
Training Nurse Practitioner Mentors to Improve New Graduate Retention

New graduate Nurse Practitioners (NP) frequently experience anxiety, isolation, and a lack of confidence transitioning from a student to the provider role in their first year of practice (Hart & Bowen, 2016; Urbanowicz, 2019; see also Hill & Sawatzky, 2011; Speight et al., 2019). These stressors can prevent the new graduates from effectively assuming their NP role, resulting in high rates of job turnover and possibly abandonment of the profession (Urbanowicz, 2019). 'Transition to Practice' programs can help new graduates during this first year of practice by offering structure, support, and guidance (American Nurses Credentialing Center, 2023; Urbanowicz, 2019). Providing mentorship for the new graduate NP, especially within a transition to practice program, addresses the emotional needs of a new NP such as isolation and anxiety (Hart & Bowen, 2016; Urbanowicz, 2019). Mentorship also encourages teamwork and builds a professional network within the organization, helping the new graduate feel confident and welcomed (Gerhart, 2012; Hill & Sawatzky, 2011; Raferty, 2015). As a result, the new graduate will have improved job satisfaction leading to improved retention at the organization and within the profession (Gerhart, 2012; Hill & Sawatzky, 2011).

The success of a mentoring relationship is heavily dependent on the engagement and effectiveness of the mentors (Moss & Jackson, 2019; Scott-Herring & Singh, 2017; Urbanowicz, 2019). While Master's and doctorate-prepared nurses receive mentorship education, additional training is needed to improve their confidence and hone their mentorship skills, especially when mentoring new graduates (American Association of Colleges of Nursing, 2006; American Association of Colleges of Nursing, 2011; Morris & Bosque, 2021; Moss & Jackson, 2019; Scott-Herring & Singh, 2017). If the experienced NPs serving as mentors are not engaged and adequately trained for the mentor role, the mentoring relationship will be unsuccessful, resulting in job dissatisfaction and possibly high rates of attrition for the new graduate NPs.
Background

The American Association of Nurse Practitioners reports that more than 355,000 NPs are working in the United States and, in addition, "more than 36,000 new graduate NPs completed their academic programs in 2020-2021" (American Association of Nurse Practitioners [AANP], 2022, NP Fact Sheet). These statistics demonstrate the number of new graduates likely to enter the workforce this year. They also demonstrate that new graduates make approximately 10% of the NP workforce, further supporting efforts to remain them within the profession. Retaining new graduates now is also an imperative step in growing the seasoned NP workforce later. With some sections of healthcare, such as primary care, projecting significant provider shortages by 2030, confident and experienced NPs will be needed to help meet the patient demand (Health Resources & Services Administration, 2022). Finally, NP turnover is extremely costly. It is estimated that the cost of turnover for one NP can be between $85,832 and $114,919 (Hartsell & Noecker, 2020). This estimate includes the cost of recruiting and onboarding a new NP and incidental costs of staff vacancies such as overtime, temporary labor, and lost revenue.

At the project site, a suburban community hospital in the mid-Atlantic region of the United States, the Department of Advanced Practitioners hires and onboards an average of four new graduate Advanced Practitioners (AP) each year, comprising about 7% of the total AP department workforce (M. Shackelford, personal communication, February 10, 2022). The project site utilizes a 'transition to practice' program with mentorship to support new graduates during their first year of practice with guidance from more experienced NPs. Ensuring a positive mentorship experience for the new graduate heavily depends on the mentor's engagement and effectiveness (Murray & Buckley, 2017; Urbanowicz, 2019). If the mentor is not adequately
engaged, the mentoring relationship will be negative, and the new graduate will be at risk for low job satisfaction, attrition, and possibly leaving the NP profession altogether (Urbanowicz, 2019).

This paper reviews a project to improve mentorship outcomes for new graduate NPs. A mentor training program, as part of a Doctor of Nursing Practice (DNP) project, was implemented to improve the engagement and effectiveness of experienced NPs who mentor new graduates in the inpatient hospital setting. This project aims to 1. improve NP confidence in mentoring new graduates through simulation-based training and 2. improve NP feedback delivery skills when mentoring new graduate NPs.

**Review of Literature**

Mentor training provides experienced NPs with essential mentoring skills and increase their confidence in using them in a mentoring relationship (Morris & Bosque, 2021; Scott-Herring & Singh, 2017). A trained mentor is more likely to successfully guide a new graduate NP through their transition into practice (Moss & Jackson, 2019). Optimal training for NP mentors involves various techniques, including simulation, experiential case studies, and in-person classes (Morris & Bosque, 2021; Moss & Jackson, 2019; Scott-Herring & Singh, 2017; Speight et al., 2019). Content for this training should focus on crucial mentorship skills needed when working with new graduates: communication, encouraging accountability, and delivering feedback effectively (Morris & Bosque, 2021; Moss & Jackson, 2019; Scott-Herring & Singh, 2017). These skills are essential to the mentor role as they will help address the unique emotional needs of a new graduate, including self-doubt, anxiety, and imposter syndrome (Gerhart, 2012; Morris & Bosque, 2021; Moss & Jackson, 2019; Scott-Herring & Singh, 2017; Speight et al., 2019). Providing education and training for experienced NPs is critical for their success in the mentor role.
Simulation is an especially effective method to teach communication skills as it provides learners with the opportunity to practice and receive real time feedback. Through simulation and debrief, learners can be guided to effectively lead difficult conversations by using active listening skills and open-ended questions, demonstrating patience, and providing non-judgmental support (Murray & Buckley, 2017).

The success of an NP mentorship program is also heavily dependent on organizational support. Protected time away from clinical duties allows the mentor to participate in training and professional development opportunities more thoroughly, thus improving mentor engagement (Moss & Jackson, 2019; Speight et al., 2019). Organizations can also support mentorship programs by incentivizing and rewarding NP mentors. Incentives, such as financial rewards and job advancement, will further engage the mentor and help integrate mentorship into the organizational culture (Morris & Bosque, 2021; Moss & Jackson, 2019).

**Translational Framework**

The Knowledge to Action (KTA) framework was used for evidence translation at the project site (see Appendix 1). Developed by Graham et al. (2006), the KTA is a versatile framework that focuses on collaboration with stakeholders to use and develop knowledge to meet an organization's specific needs. The KTA framework is comprised of two interconnected processes. The first process, called knowledge creation, generates knowledge, and the second process, called the action cycle, applies the knowledge (Campione et al., 2021; Graham et al., 2006; Milat & Li, 2017).

In the first process of knowledge creation, a literature review identified that training NPs improves their effectiveness and engagement in the mentor role, thus optimizing mentorship outcomes for the new graduate mentees. Simulation is an effective training strategy and can be
tailored to meet the needs of the new graduates, such as receiving clear communication. From this knowledge, an intervention was developed: a mentor training program that teaches experienced NPs how to effectively deliver feedback to new graduate mentees.

The KTA's action cycle tailored the intervention to the project site through seven steps (Graham et al., 2006). First, relevant organizational stakeholders were enrolled, and organizational barriers were identified with their collaboration and input. The KTA framework is heavily rooted in early and frequent collaboration with organizational stakeholders. The project site is a moderate-sized community hospital, and the number of stakeholders for this project was relatively low, making it feasible to engage them throughout the evidence translation process. Next, the intervention was revised to mitigate some of the barriers. This step was most clearly demonstrated when collaborating with the simulation center to determine the training timing based on the availability of simulation resources. Once revised, the intervention was implemented with close monitoring of outcomes. Ongoing monitoring of outcomes promotes multiple iterations of the intervention, allowing for adaptation to dynamic barriers such as staffing and resource constraints. Finally, using the outcome data and ongoing input from stakeholders, the intervention can be tailored again to achieve sustainability (Campione et al., 2021; Milat & Li, 2017; Straus et al., 2008).

Methods

Project Design

This scholarly research project aimed to implement and evaluate a mentor training program for experienced NPs who mentor new graduate NPs in the hospital setting. The project will determine if a training program improves the confidence and skills of the mentor. This DNP project, implemented between September and November 2022, utilized a prospective
pretest/posttest design. The setting was a moderate-sized, suburban community hospital in the mid-Atlantic region of the United States.

**Sample**

The sample for this project was inpatient-based, certified nurse practitioners. Inclusion criteria included the following NP certifications: Adult Acute Care, Adult Gerontology Acute Care, Pediatric Acute Care, Family, Women’s Health, and Neonatal. Additionally, inclusion criteria included three or more years of NP experience and full-time, part-time, or as-needed employment status at the project site. Exclusion criteria included: not working in the inpatient environment and having less than three years of NP experience. It was estimated that 20 NPs would meet inclusion criteria at the project site. A convenience sample of 8 was targeted to allow for an adequate representation of the overall sample.

Participants were recruited using two department-wide emails and verbal communication by the DNP student at staff meetings. Potential participants could sign up for the project using a sign-up form linked in the email. Due to resource limitations at the simulation center, the simulations were scheduled on three dates through October 2022 in 4-hour schedule blocks. Participants were then able to select a one-hour time slot, and each time slot could accommodate up to two participants.

The Johns Hopkins Project Ethical Review Committee (PERC) and the site’s Institutional Review Board (IRB) reviewed and approved the project. IRB granted human research-exempt status.

**Intervention**

The DNP student developed content for an in-person class and simulation experience to teach the REFLECT framework (Zinns et al., 2020) as a method of feedback delivery. The class
was designed to introduce the framework, describe how it is a viable method of feedback delivery when mentoring new graduate NPs, and allow for discussion so the participants could fully conceptualize the content. Simultaneously, the DNP student collaborated closely with the simulation center manager during the six weeks prior to intervention implementation to develop simulation content, ensure feasibility and fidelity in simulation design, and run a trial simulation (INACSL Standards Committee, Persico, et al., 2021; INACSL Standards Committee, Watts, et al., 2021). In the simulation scenario, the participant receives written feedback from a trusted colleague regarding the professionalism of their mentee, Carol. The mentee is a new graduate NP who is six months into her first NP job. The feedback given to the mentor states that the new NP was late for multidisciplinary rounds and, once there, she was unfamiliar with her patients, disengaged in the conversation, and using her personal phone. During the trial simulation, a volunteer playing the role of the new graduate NP was trained to the simulation, including the participants’ expected behaviors and the volunteer’s preferred responses.

The participants arrived at the simulation center for their chosen time slot to participate in the project. Pre-intervention data, including a demographic survey, were collected using paper surveys. Participants self-generated a 6-digit number to use on all project surveys to ensure data de-identification and track completeness of data collection. The DNP student then presented the REFLECT framework (Zinns et al., 2020) content to the participants over 10 to 15 minutes. After answering participant questions regarding the framework, they were oriented to the simulation environment, purpose, and volunteer’s role. Next, they were provided with the simulation scenario: They are a mentor to a new graduate NP and have received feedback from a co-worker regarding the new graduate’s lack of professionalism. The simulation was allowed to run for up to 10 minutes. If there were two participants in a time slot, each participant would take
turns in the simulation. After the simulations were completed, the participants and the simulation volunteer participated in a guided debrief led by the DNP student, which lasted about 20 minutes. Finally, post-intervention data were collected. After the project, participants were awarded 1 hour of continuing medical education (CME) through the organization’s CME office.

**Measures & Instruments**

**Data Collection and Analysis for Participant Demographics**

Participant demographics were obtained through a survey administered at the start of the intervention. Developed by the DNP student, this survey collected information on the participants age, sex, practice specialty, years of NP experience, prior experience as a mentor for new graduates, and prior formal mentor training experience. This data was analyzed using descriptive statistics. Counts, means, and standard deviations will be reported.

**Data Collection and Analysis for Aim One**

The National League for Nursing’s Student Satisfaction and Self-Confidence in Learning Scale (SCLS) was utilized to measure the first aim of this project. This scale is a 13-item survey that evaluates the effectiveness of simulation as a teaching strategy. The scale contains two sections; the first measures a learner’s satisfaction with the simulation, and the second measures the learner’s self-confidence in the skills obtained through the simulation activity. The SCLS utilizes a 5-point Likert scale, where one represents strong disagreement with the question and five represents strong agreement with the presented question (National League for Nursing [NLN], 2004). A high composite score indicates that the learner feels simulation was an effective teaching strategy and they are confident in their ability to use skills gained through the simulation activity. Cronbach’s alpha score is 0.94 for the student’s satisfaction piece of the scale.
and 0.87 for the student’s self-confidence piece of the scale, both correlating to high internal reliability (NLN, 2004).

The results of the second section of this tool will be analyzed to measure whether teaching a method of feedback delivery using simulation improves participants’ self-confidence in their communication skills. This tool was administered post-intervention only; therefore, data analysis will be accomplished utilizing total descriptive statistics analysis. Only the results produced from the second section of the SCLS tool will be reported as learner self-confidence is being measured in the first aim. Mean and standard deviation will be reported.

**Data Collection and Analysis for Aim Two**

The Mentor Competency Assessment (MCA) tool (Fleming et al., 2013) was administered to the participants pre- and post-intervention to measure the second aim of this project. This tool measures the change in communication-specific mentor skills. Designed initially for research mentors, the MCA is a validated, 26-question tool used to evaluate six main competencies for mentors, including effective communication, fostering professionalism, and assessing for understanding (Fleming et al., 2013). The MCA utilizes a 7-point Likert scale measuring the mentor’s skill level ranging from a score of one, indicating not skilled, to seven, indicating highly skilled. A high composite score demonstrates that the learner feels very skilled performing mentor specific competencies. The Cronbach’s alpha score is 0.91, supporting high internal reliability (Fleming et al., 2013).

Data analysis for the second aim will utilize a one-sample t-test. Since participant recruitment produced a small sample size (n=8), a post hoc effect size will be computed using Cohen’s D calculation. The data will be analyzed using total pre and post total MCA scores as well as pre and post scores for MCA questions specific to delivering feedback to a mentee.
Data Management

All hard copies of the participant surveys are kept in a locked drawer in a private, access-controlled office. The DNP student is the only person with access to the drawer. Since the participants used a personally generated identifying number for data collection and no personal identifying information was included in the surveys, all collected data is de-identified. The de-identified data is also stored electronically in Johns Hopkins OneDrive with settings set to private. Since this project was deemed human subject research-exempt, all project data will be retained for seven years. Finally, IBM SPSS Statistics 27 was used to analyze all data.

Results

Sample Characteristics

A total of eight Nurse Practitioners participated in this project representing Medicine/Surgery (25%), Obstetrics/Labor & Delivery (25%), and Neonatal (50%) specialties. There was no participant attrition. 50% of the participants were between 30-39 years, and 100% were female. While 50% of the participants had 3-5 years of NP experience, the remaining had 11 or more years of experience. Finally, 75% of participants had not received prior mentorship training (see Table 1).

Outcomes for Aim One

The second section of the SSCL survey assessed the participant’s self-confidence in their learning and was used to measure the results of Aim One. A high score of five indicates that the learner feels confident using skills gained through the simulation activity. This survey was administered post-intervention only, and there was no missing data. The mean response was 4.59 (SD .38), representing that overall, the participants are confident that they acquired the skills to deliver feedback effectively after the intervention.
Outcomes for Aim Two

The MCA assesses the participant’s subjective ability to perform mentor-related skills. A high score of seven indicates that the participant is extremely skilled. The pre-MCA mean summary score was 4.58 (SD .55). Following the intervention, the post-MCA mean summary score was 5.64 (SD .78), which was a mean increase of 1.06 (SD .56). When looking specifically at the four survey questions that address delivering feedback to a mentee, the pre mean summary score was 4.91 (SD .58) and the post mean summary score was 6.03 (SD .65). This is a mean increase of 1.13 (SD .23). The difference between the average pre and post scores are illustrated in Figure 1.

A single t-test was performed to analyze the difference between the average pre- and post-MCA scores. The mean difference was 1.06, 95% CI [0.57, 1.54], a statistically significant result (p=.001). A second single t-test was then performed to analyze the difference between the average pre- and post-scores for the MCA questions specific to delivering feedback. The mean difference of this test was 1.13, 95% CI [0.93, 1.31], which was also a statistically significant result (p<.001). These results demonstrate a statistically significant increase in the participant survey scores after completing the intervention (see table 2).

Discussion

Mentorship is an effective strategy to mitigate common emotional stressors of new graduate NPs. When these stressors are addressed, new NPs are more likely to have high job satisfaction and less attrition in their first year of practice (Urbanowicz, 2019). However, for the mentoring relationship to be successful, the experienced NPs serving as the mentor must be engaged and effective (Moss & Jackson, 2019; Scott-Herring & Singh, 2017; Urbanowicz, 2019). The results of this DNP project show that implementing a simulation-based mentor
training program to teach experienced NPs essential mentorship skills, such as feedback delivery, increases the skill of the mentor. Additionally, after participating in a simulation-based mentor training, experienced NPs feel confident they have gained the knowledge and skills needed to perform in the mentor role. Overall, this DNP study suggests that training NP mentors is a viable strategy to develop their confidence and effectiveness in the mentor role. Since training the NP mentors can improve the effectiveness of the mentors, this strategy may also optimize the positive outcomes of the mentoring relationship for new graduate NPs.

Training experienced NPs in critical mentor skills has yet to be extensively studied; however, the results of this project do align with two similar, recent studies. A slightly larger study by Scott-Herring & Singh in 2017 looked at providing preceptor-mentorship training to 12 certified registered nurse anesthetists (CRNA). Education was provided via lecture over three sessions, and the content included 1. communication skills, 2. providing constructive feedback, and 3. assessing learning styles. Unlike this DNP study, simulation was not included in the intervention design. The CRNA mentors’ satisfaction, comfort, and confidence were measured pre and post-intervention. Scott-Herring & Singh (2017) found that the confidence scores remained unchanged while mentor satisfaction and comfort increased post-intervention. The authors postulated that providing more role-playing and practice opportunities could have increased the confidence scores post-intervention. The participant confidence level was measured in this DNP study using the SSCL survey; however, because this was administered post-intervention only, it is unclear if using simulation as an educational method would increase the participants’ confidence. Scott-Herring & Singh (2017) did not measure mentor skill level; therefore, these outcomes cannot be compared.
In another 2017 study, Murry & Buckley looked at perceptions of mentorship among primary and acute care NPs and studied the impact of simulation as a training method to teach NP mentors how to approach difficult conversations. This study’s simulation intervention included sixteen NPs already in established leadership roles. Similar to this DNP project, the impact of the simulation was measured with the SSCL post-intervention. When looking at the second section of the SSCL survey, which assesses the participant’s self-confidence in their newly acquired knowledge, Murry & Buckley (2017) found a mean response of 4.48, which was very similar to the mean response of 4.58 found in this project.

The results of this DNP study add new knowledge on the topic of NP mentorship. First, these results show that implementing a simulation-based training program to teach experienced NPs mentorship skills may improve their ability to perform in the mentor role, which has yet to be shown. Second, this study reinforces that using simulation as a teaching method promotes mentor confidence when using newly acquired mentorship skills. There is still more to be learned regarding NP mentorship. This project sets the stage for future projects to explore whether a simulation-based intervention improves mentor confidence or determine the measurable impact of NP mentor training on specific new graduate NP outcomes, such as attrition, burnout, and resiliency.

There were some limitations to this DNP project. A primary limitation is the small sample size. Eight NPs completed the intervention, representing a third of the NPs at the organization meeting the inclusion criteria. In addition, while there was a fair amount of diversity among the represented NP specialties, all the participants were female, and there was no representation of NPs with 6 to 10 years of experience. These gaps may skew the results and impact outcomes if this project is applied to other groups and demographics of NPs. A final
limitation was the MCA survey. This survey was geared toward academic mentorship and not testing in the NP population; therefore, some questions were not applicable or specific to NP mentorship.

Despite the limitations, this project demonstrated several strengths, such as complete retention of participants and no missing data. Additional project strengths include strong stakeholder support and buy-in, which greatly facilitated the implementation of this study. The final and most crucial strength was access to the organization simulation center and close collaboration with the simulation manager. This partnership helped secure the needed resources to implement the intervention, such as locating a physical space for the simulation and recruiting a qualified simulation volunteer. Additionally, having the expertise and input of the simulation manager helped ensure the fidelity of the intervention over multiple sessions.

**Conclusion**

If the experienced NPs serving as mentors to new graduate NPs are not effectively engaged in the mentor role, the mentoring relationship may be unsuccessful, leading to job dissatisfaction and high attrition for the new graduate NPs. There are multiple characteristics that facilitate a successful mentoring relationship; however, training the NP mentor has the most direct impact on new graduate outcomes. Providing training to NPs strengthens their engagement and effectiveness in the mentor role. A combination approach of lecture and simulation teaches the essential mentor skill of feedback delivery and was found to significantly improve the confidence and skills of NP mentors at a community hospital setting. More research is needed to measure the direct impact of mentor training on new graduate outcomes, such as retention, resiliency, and overall job satisfaction. However, NP mentor training is an encouraging
intervention that will positively impact the mentoring relationship by improving mentor effectiveness.

**Dissemination**

The work and results of this DNP project will be disseminated in various ways. A review of the project and outcomes will be presented to the project site stakeholders during a Department of Advanced Practitioners staff meeting this spring. It will also be presented via poster at the Johns Hopkins School of Nursing DNP Scholar Day in May 2023. Additionally, this work was accepted to be presented via a podium presentation at the American Association of Nurse Practitioners national conference in June 2023. Finally, this DNP project and results will be submitted for publication in a peer reviewed journal geared toward an NP audience, such as the Journal for Nurse Practitioners.

**Sustainability**

One of the short-term goals for sustainability was to create an ongoing NP mentor training program, which would continue to focus on teaching feedback delivery but also incorporate other essential mentor skills. Due to resource re-prioritization, this project is not able to be sustained at the project site at this time. However, there will be ongoing efforts to achieve larger scale sustainability. The five-year goal will be to grow this work into a comprehensive mentorship program that can be tailored to meet the needs of various organizations and implemented at different sites. Resources such as the “ANA Innovation Accelerator” (American Nurses Association, n.d.) will be utilized to help structure and grow a viable, sustainable program. Additionally, mentors and content experts in the fields of simulation and NP mentorship will be identified for ongoing learning and collaboration.
References


practitioners. *Nurse Leader, 10*(3), 51-3.


INASCL Standards Committee, Watts, P.I., McDermott, D.S., Alinier, G., Charnetski, M.,


# Tables

## Table 1. Sample characteristics

<table>
<thead>
<tr>
<th>Demographic characteristics</th>
<th>(N=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, n (%)</td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>4 (50)</td>
</tr>
<tr>
<td>40-49</td>
<td>2 (25)</td>
</tr>
<tr>
<td>50 and above</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Gender identity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>8 (100)</td>
</tr>
<tr>
<td>Male</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Years of NP practice, n (%)</td>
<td></td>
</tr>
<tr>
<td>3-5 years</td>
<td>4 (50)</td>
</tr>
<tr>
<td>6-10 years</td>
<td>0 (0)</td>
</tr>
<tr>
<td>11-15 years</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td>&gt;15 years</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>Area of practice specialty, n (%)</td>
<td></td>
</tr>
<tr>
<td>Med/Surg</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Neonatal</td>
<td>4 (50)</td>
</tr>
<tr>
<td>Palliative care</td>
<td>0 (0)</td>
</tr>
<tr>
<td>OB/L&amp;D</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Prior mentor training, n (%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2 (25)</td>
</tr>
<tr>
<td>No</td>
<td>6 (75)</td>
</tr>
</tbody>
</table>

Note: OB/L&D = Obstetrics/Labor and Delivery

## Table 2. Results of t-test analysis

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>t</th>
<th>95% Confidence Interval</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average difference between pre/post MCA score</td>
<td>1.06</td>
<td>5.16</td>
<td>0.57 - 1.54</td>
<td>.001</td>
</tr>
<tr>
<td>Average difference between pre/post MCA score- feedback specific</td>
<td>1.13</td>
<td>13.74</td>
<td>0.93 - 1.32</td>
<td>&lt;.001</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Difference between mean MCA scores pre and post intervention
Appendix

Appendix A

Translation of Evidence using the Knowledge to Action Cycle

Identify Problem:
High new graduate NP turnover due to negative experience in first year of practice

Enroll and engage organizational stakeholders: hospital leadership, nursing education leadership, Advanced Practice leadership

Assess and evaluate barriers to implementation: financial implications, staffing constraints, unforeseen problems

Knowledge Inquiry:
Establish background and scope of problem: new grad NP at risk for burnout without engaged, trained mentor

Knowledge Synthesis:
Discover best new grad NP mentorship program practices

Knowledge Product:
NP mentor training program

Implement intervention: mentor training program for experienced NPs at a moderate, community hospital

Monitor and measure outcomes of intervention: participant satisfaction, improved self confidence in mentor role, improved mentorships skills

Use outcomes measures and ongoing stakeholder feedback to achieve sustainability of intervention

Tailor intervention to incorporate stakeholder feedback, address barriers

Note: Adapted from Graham et al. (2006). Lost in knowledge translation: Time for a map? The Journal of Continuing Education in the Health Professions, 26, 13-24.