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A B S T R A C T   

With the advent of the SARS-CoV-2 pandemic, Wastewater-Based Epidemiology (WBE) has been applied to track 
community infection in cities worldwide and has proven succesful as an early warning system for identification 
of hotspots and changingprevalence of infections (both symptomatic and asymptomatic) at a city or sub-city 
level. Wastewater is only one of environmental compartments that requires consideration. In this manuscript, 
we have critically evaluated the knowledge-base and preparedness for building early warning systems in a 
rapidly urbanising world, with particular attention to Africa, which experiences rapid population growth and 
urbanisation. We have proposed a Digital Urban Environment Fingerprinting Platform (DUEF) – a new approach 
in hazard forecasting and early-warning systems for global health risks and an extension to the existing concept 
of smart cities. The urban environment (especially wastewater) contains a complex mixture of substances 
including toxic chemicals, infectious biological agents and human excretion products. DUEF assumes that these 
specific endo- and exogenous residues, anonymously pooled by communities’ wastewater, are indicative of 
community-wide exposure and the resulting effects. DUEF postulates that the measurement of the substances 
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continuously and anonymously pooled by the receiving environment (sewage, surface water, soils and air), can 
provide near real-time dynamic information about the quantity and type of physical, biological or chemical 
stressors to which the surveyed systems are exposed, and can create a risk profile on the potential effects of these 
exposures. Successful development and utilisation of a DUEF globally requires a tiered approach including: Stage 
I: network building, capacity building, stakeholder engagement as well as a conceptual model, followed by Stage 
II: DUEF development, Stage III: implementation, and Stage IV: management and utilization. We have identified 
four key pillars required for the establishment of a DUEF framework: (1) Environmental fingerprints, (2) So-
cioeconomic fingerprints, (3) Statistics and modelling and (4) Information systems. This manuscript critically 
evaluates the current knowledge base within each pillar and provides recommendations for further developments 
with an aim of laying grounds for successful development of global DUEF platforms.   

1. Introduction 

1.1. The global challenge of maintaining public and environmental health 
in the face of rapid urbanization 

The coming decades will bring profound changes to the size and 
spatial distribution of the global population. It is projected that 66% of 
the world’s population will live in urban areas by 2050, with ~90% of 
this concentrated in Asia and Africa (United and Nations). This un-
precedented rate of urbanization constitutes substantial risks to the 
resilience of cities, with public and ecosystem health and welfare being 
of critical concern. This includes the emergence of non-communicable 
diseases (NCDs). NCDs are the leading cause of death globally, with 
71% of the world’s 56.9 M deaths recorded in 2016, including diabetes 
and cardiovascular/respiratory diseases (WHO and diseases 2014). 

Urbanization is a powerful driver of population mobility which re-
sults in increased risks in contracting and spread of communicable dis-
ease, e.g. SARS (2003), H1N1 (2009), Ebola (2014), Zika (2015) and 
SARS-CoV-2 (2019). The most densely populated regions present the 
highest risk, particularly in low- to middle income countries (LMICs). 
Africa is experiencing the fastest rate of urbanisation and population 
growth globally, leading to exponential urban densification within re-
gions where service delivery and healthcare do not meet the demands of 
such rapid growth. The recent SARS-CoV-2 (Covid-19) pandemic has 
clearly illustrated the need for improved risk prediction in low resource 
settings, including urbanised regions in LMIC settings where less phys-
ical distancing, rapid clinical testing and limited case isolation pose 
challenges to mitigate disease spread in densely populated communities 
(Wells et al., 2020). Reports throughout Africa have shown an under-
estimation of the true mortality rate caused by Covid-19, for example a 
case where post-mortem investigations at an African hospital have 
shown a high rate of confirmed infection with the virus without prior 
knowledge of their infection before their death (Mwananyanda et al. 
2021). Apart from the health challenges posed by population density in 
urban settings, many LMIC (peri)urban communities rely on communal 
waste discharge facilities (solid- and excretion waste) and potable water 
supplies for their day-to-day activities and may discharge anthropogenic 
waste into the environment on which they depend for freshwater. Urban 
settings in Africa, and LMICs in general, thus present additional chal-
lenges compared to higher-income countries (HICs) to safeguard both 
public- and ecological health. 

To increase the sustainability of cities, there is a critical need for 
Early Warning Systems (EWSs) for public and environmental health 
diagnostics that operate on a large scale and in real time. The re-
quirements for an EWS might differ between cities, countries and con-
tinents. For example, HICs are well-equipped for digital innovation and 
have established infrastructure, although this is often outdated. In 
contrast, there has been an unprecedented uptake of new technology 
among the young, rapidly expanding and increasingly urbanized African 
population (Millington 2017, Carbone 2018). This trend presents a 
unique opportunity for the development of a comprehensive and real 
time EWS that is codesigned with multi-sector stakeholders and attuned 
to public and environmental health risk intervention. 

This manuscript aims to explore opportunities for an innovative 

hazard forecasting platform for global public and environmental health 
diagnostics, with particular attention to Africa and the challenges pre-
sented by LMICs (Fig. 1). 

1.2. Digital urban environment fingerprinting (DUEF) - a new approach in 
hazard forecasting and early-warning systems 

The urban environment consists of various components amenable to 
measurement and monitoring: water, air, and soil, but also less 
commonly recognized biological entities such as invertebrates. These 
components contain a complex mixture of substances including toxic 
chemicals, infectious biological agents and human excretion products 
that are indicative of community-wide exposure and the resulting ef-
fects. The urban environment can thus be considered as a community- 
wide diagnostic medium for the health status of a city, with commu-
nities’ wastewater representing a particularly accessible and rich source 
of anonymously collected data. DUEF postulates that the measurement 
of endo- and exogenous environments and human-derived residues, 
provides qualitative and quantitative information on the physical, bio-
logical or chemical stressors to which the surveyed systems are exposed. 

The approach of extracting epidemiological information from one 
environmental compartment - wastewater emerged as Wastewater- 
Based Epidemiology (WBE) that currently informs worldwide illicit 
drug use trends (Thomas et al. 2012, Ort et al. 2014, González-Mariño 
et al. 2020) and has been further applied to estimate public exposure to 
alcohol (Castiglioni et al. 2014, Baz-Lomba et al. 2016), tobacco (Cas-
tiglioni et al. 2014) and viruses (Lodder et al. 2012, Lodder et al. 2013). 
There is also a growing number of reports focusing on public exposure to 
toxic chemicals including pesticides (Rousis et al. 2017) and industrial 
chemicals (Lopardo et al. 2019; Been et al. 2018, Kasprzyk-Hordern 
et al. 2021). Further information on WBE can be found elsewhere 
(Gracia-Lor et al. 2017, Choi et al. 2018, Choi et al. 2020, Daughton 
2020) Moreover, with the advent of the SARS-CoV-2 coronavirus 
pandemic since the end of 2019 (COVID-19), WBE has been successfully 
applied globally to track community infection (Bivins et al. 2020, Lundy 
et al. 2021). Although WBE shows promise as an EWS for profiling of 
(non)communicable disease and chemical substance use/exposure, 
several research gaps still need to be addressed to ensure a successful 
global implementation of EWS, including:  

(1) the application of the principles of WBE to develop digital, 
autonomous EWS, 

(2) the development of new sensing and systems integration meth-
odologies amenable to widespread deployment through Internet- 
of-Things, citizen science, or a combined approach,  

(3) the development of models that will integrate both biological and 
chemical stressors for pattern recognition to enable reliable 
cause-effect identification,  

(4) the development of EWS and stable biomarkers for infectious 
diseases with rapid onset of action requiring immediate response 
versus EWS for NCDs requiring multilevel longitudinal data 
collection, 

(5) integration of community and expert knowledge in the develop-
ment of EWS to ensure technology uptake 
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(6) approaches for rapid community wide knowledge dissemination 
through effective data integration, visualisation and curation. 

In response to these requirements for successful EWS development 
on a global scale, this manuscript explores different dimensions of 
possible implementation of an EWS in contrasting locations worldwide. 

2. Development and utilisation of a digital urban environment 
fingerprinting platform 

A comprehensive DUEF platform for EWS requires interdisciplinary 
bioanalytical, socio-economic and citizen science approaches, as well as 
geospatial and statistical modelling tools that could transform global 
cities if the technologies are focused on key areas of critical importance 
for public or ecological health. This holds especially true for rapidly 
growing cities worldwide, particularly those in Africa, to address key 
challenges, including: (1) sanitation and the importance of water in 
managing infectious disease and antimicrobial resistance (AMR), and 
(2) mitigating the impact of urbanisation and pollution on environ-
mental degradation and non-communicable disease risks. Such a plat-
form would add a much-needed pathway to predict the cascade of 
consequences resulting from natural and anthropogenic hazards (e.g. 
floods, droughts, infectious diseases and toxic chemical exposure) in the 
context of sustained urbanisation. For example, flooding can lead to a 
power-cut that disables communal amenities, which may in turn trigger 
the spread of pathogenic organisms and toxins via contaminated water, 
resulting in affected communities starting to excrete elevated levels of 
disease biomarkers (Brown and Murray 2013, Boyce et al. 2016, Chad-
suthi et al. 2018). There will be immediate environmental and socio- 
economic impacts (e.g. lost livelihoods and an increased strain on 
health-care systems) and, if unchecked, yet wider ripple effects through 
withdrawal of investment from, and stigmatisation of the region. 
Applying systems thinking to these causal networks, could help identify 
the feedback mechanisms that lock the system into a certain state, as 
well as indicating intervention points to increase the resilience of the 
system. 

Successful development and utilisation of a DUEF requires a tiered 
approach including: Stage I: network building, capacity building, 
stakeholder engagement as well as a conceptual model followed by 
Stage II: DUEF development, STAGE III: implementation and STAGE IV: 
management (Fig. 2). 

The rapid evolution of the Internet of Things (IoT) has greatly 
enhanced the utility of sensors and cloud computing to capture a wide 
range of environmental measures (Fig. 3) (Malche et al. 2019). Case 
studies have demonstrated the value of such distributed systems in 
identifying correlations between environmental factors, such as trends 

of increased fluctuation in air temperature and precipitation, with 
ecological indicators such as gross primary production (Fang et al. 
2014). The collaborative IoT (C-IoT) is an emerging paradigm that in-
volves multiple stakeholders cooperating in data gathering and service 
sharing. Applications, such as smart cities and environmental moni-
toring, use the concept of crowdsensing to produce the quantity and 
quality of data that such IoT scenarios need in order to be pervasive. 
Architectures have been developed that are able to handle the complex 
features associated with these systems such as: heterogeneous data 
sources, information representation and unification, IoT device man-
agement and deployment and mobile crowdsensing management 
(Montori et al. 2018). Beyond the C-IoT paradigm, the Internet of 
Everything (IoE) concept recognises the four (4) interconnected pillars 
of people, data, process, and things, extending the role of stakeholders 
and communities beyond data gathering by applying the C-IoT to aid 
automated and people-based processes (Miraz et al. 2015). 

The input variables for the development of an EWS include data on 
bio-physicochemical markers, and information from geospatial mapping 
and autonomous sampling and sensing platforms. An advantage of the C- 
IoT approach is the integration of multiple datasets gathered by a variety 
of stakeholders. Citizen science and citizen sensing not only increase 
capacity for generation of input data, but also facilitate the direct in-
clusion of specific citizen interests into the EWS (Jollymore et al. 2017). 
In addition to these technological advances, there is a clear need for 
further stakeholder engagement and community input to generate 
related socio-economic indicators for incorporation into EWS platforms, 
and to ensure EWS outputs are integrated with automated and human 
response processes (IoE). Forecasting and projection with statistical 
modelling tools, hydrological models, and pattern recognition are 
essential variables for the development of an EWS. These requirements 
can be met by integration of the C-IoT paradigm with a cloud-based 
computing service that offers scalable, highly available, secure and 
cost-effective compute resources that are not reliant on local hardware 
or infrastructure. Such cloud platforms have already been demonstrated 
to provide a scalable and extremely reliable EWS for earthquake sensing 
in New Zealand’s GeoNet system. DUEF proposes a distributed sensor 
architecture (Fig. 4), based on the concept of IoT enabled sensor plat-
forms, with a scalable set of individual sensors that are tailored both for 
the local environment, and provide a useful set of data for large scale 
data analysis with associated conceptual data. 

Previous work on environmental sensing demonstrated the impor-
tance of appropriate visualisations of data, tailored to stakeholder needs 
(Kanjo et al. 2008, Chamberlain et al. 2014). This may include providing 
contextual data for readings, real time maps or graphs. Heterogeneous 
data sources (from both IoT and community sources) can be aggregated 
and presented across a broad range of platforms such as web and mobile 

Fig. 1. Multi-hazard early warning system utilising urban water.  
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applications. While participatory sensing and collaborative analysis can 
be deployed as part of a data collection process, a user centred approach 
in the design of the system including an awareness of the motivations of 
the stakeholders, helps to tailor the process and develop engagement in 
the use of the system (Aoki et al. 2017) and can aid in the eventual 
technology uptake. Fig. 4(a) shows the potential architecture of an IoT 
sensor-based system that uses a cloud and edge-based processing para-
digm, with a configurable array of water sensors such as the Atlas Sci-
entific (Long Island City, NY) sensor array shown in Fig. 4(b), that can be 
tailored to the local environmental context. For example, these could 
include a typical water quality sensor array that measures temperature, 
pH, dissolved oxygen, but could be extended with additional custom 
sensors for specific characteristics including but not limited to heavy 
metals, nitrates, or pathogens. The sensor nodes can be deployed in 
static locations or on autonomous surface platforms such as the PRIME 
platform shown in Fig. 4(c) (Metcalfe et al., 2016, 2018) which has been 
used for remote sensor deployment in rivers, lakes and canals, and 

integration with GIS data as shown in Fig. 4(d). 

3. Understanding and characterising cause-effect associations in 
hazard forecasting via environment fingerprinting – Conceptual 
framework 

We have identified four (4) key pillars required for the establishment 
of a DUEF framework: (1) Environmental fingerprints, (2) Socioeco-
nomic fingerprints, (3) Statistics and modelling and (4) Information 
platforms, as described below. We consider that these four pillars need 
to be equally addressed upon the development of an EWS and should be 
tailored according to the unique challenges within each test location. A 
summary of the four key pillars are described below: 

3.1. Environmental fingerprints 

Several factors require consideration when establishing 

Fig. 2. Hazard forecasting and early-warning system for health risks, a four-stage approach.  

Fig. 3. Environment fingerprinting platform for public, environmental health diagnostics and hazard forecasting based on Internet of Things sensors and utilising the 
cloud for distributed data storage and analytics. 
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environmental fingerprints, namely: (1) selection of bio-physico- 
chemical marker suite, (2) city-geospatial mapping, and (3) design of 
autonomous sampling and sensing platforms. 

3.1.1. Biophysicochemical marker suite 
Carefully informed selection of the bio-physico-chemical marker 

suite required for the study of cause-effect associations is key to suc-
cessful implementation. Examples of potential marker groups that 
characterise hazard, stressors, and their resulting effects (focusing on the 
measurement in water) are listed in Table 1. These include: (1) biolog-
ical/biochemical markers (such as pathogens: bacterial infections – 
cholera, typhoid; viral infections – norovirus, rotavirus and hepatitis; 
and fungal infections); (2) climate (physical) markers (e.g. rainfall, 
ambient air temperature) and basic indicators of ambient water quality 
(pH, DO, conductivity, etc); (3) chemical markers (e.g. metals, nutrients, 
legacy and emerging organic contaminants) of cause - health effect as-
sociations (e.g. oxidative stress, inflammation) (Rice and Kasprzyk- 
Hordern 2019, Sims and Kasprzyk-Hordern 2020). 

3.1.2. City-geospatial mapping 
Geospatial information-based city profiling and mapping based on 

physical, social, economic, heath and governance structure variabilities 
provides a good entry-point to DUEF development including selection of 
sampling sites for deployment of autonomous sensing and sampling 
devices, as well as identification of the communities for engagement and 
citizen science. The need for city profiling and mapping is premised on 
the underlying relationship between location and health (Pigott et al. 
2015, Murad and Khashoggi 2020) and the fact that spatial mapping 
could provide insights into the dynamics of disease outbreaks (Gao et al. 
2008). Spatial aspects are also relevant to the relationships between 
pathological factors and their environments (Cromley 2003), diseases 
prioritization (Pigott et al. 2015), and disease surveillance (Kumar et al. 

2017, Franch-Pardo et al. 2020, Quan et al. 2020). Spatio-temporal 
visualisation of the bio-physico-chemical markers is critical for EWS 
and disease management. 

3.1.3. Autonomous spatiotemporal sensing and sampling platform 
Effective environmental fingerprinting necessarily requires the 

development of innovative integrated systems able to monitor in situ the 
range of bio-physico-chemical markers listed in Table 1. Such systems 
would also require an embedded wireless communication platform for 
real-time data transfer and control into the cloud. Several sensors are 
already available for some of the markers of interest (Yang et al. 2016, 
Bernalte et al. 2020). However, current sensing technologies cannot 
achieve the required limits of detection for most biological markers. 
Also, real time monitoring of biological biomarkers and emerging pol-
lutants remains an issue. The key difficulty is associated with the need 
for sample pre-treatment (e.g. DNA extraction for genetic markers, pre- 
concentration of protein markers) that challenges real-time operations. 
It is therefore important to develop new technologies capable of effec-
tively integrating detection with sample pre-treatment, while main-
taining key features such as portability, simplicity of use and 
affordability. PCR on a chip or single-molecule sequencing based on 
nanopores are possible solutions for point of need sequencing (Saettone 
et al. 2019). Along with the development of innovative sensors, auton-
omous spatiotemporal sampling based on custom built Internet of 
Things platforms must be developed. The resulting devices should be 
geographically distributed in the target area to be monitored to form a 
mesh-network of devices that provides responsive spatiotemporal 
sampling. 

Fig. 4. a-d. Environment fingerprinting platform using multiple IoT sensor platforms, edge computation and distributed visualization tools.  
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3.2. Socioeconomic fingerprints 

3.2.1. Stakeholder and community engagement 
The involvement of stakeholders and communities in environmental 

quality monitoring is gaining attention globally with the growth of cit-
izen science for biodiversity evaluations, environmental advocacies, and 
monitoring wildlife threats, among others (Bernalte et al. 2020). Digital 
technology using smart phones, social media, IoT, big data analytics, 
cloud computing (Paul et al. 2019) and KoBo Toolbox, which is a suite of 
tools for field data collection in use in challenging environment can be 
adopted. These devices and strategies could make engagement of the 
broader population in environmental monitoring easier. More specif-
ically, the importance of involving stakeholders, particularly in LMICs 
context, has been underscored in several studies which points to the 
need for risk communication and incorporation of indigenous knowl-
edge in scientific endeavours to safeguard environmental quality and 
human health (Sogbanmu et al. 2020). Recent systematic reviews 
(Macherera and Chimbari 2016, Marchezini et al. 2018, Sufri et al. 
2019) examine cases of EWS that adopt a community-based or centric 
approach in order to characterise the ways, and the extent to which, 
communities are being involved in the design, development and 
implementation of EWS. These studies highlight the necessity and value 
of efforts to integrate traditional/local disaster knowledge with scien-
tific knowledge development of community centred EWS. This requires 
engaging with local stakeholders and communities to identify their 
priorities and vulnerabilities, their local/indigenous and scientific stra-
tegies and co-creating an integrated strategy (Mercer et al. 2010). Sci-
entists need to make deliberate efforts to integrate different knowledge 
systems using participatory and citizen-science approaches (Cieslik et al. 
2019, Klimeš et al. 2019). Such efforts can result in improved disaster 
risk reduction tools (e.g., simulation models, conceptual frameworks, 
hazard maps, management plans) that are rooted in local realities, in-
crease trust between communities and scientists, increase the of 
ownership and responsibility of the community as well as greater 
engagement with risk reduction initiatives(Cieslik et al. 2019, Cochrane 
et al. 2019, Klimeš et al. 2019). Although the process of knowledge 

integration is not without challenges, willingness to communicate and 
learn from the other, ongoing dialogue and collaboration, and mutual 
respect are vital (Mercer et al. 2010, Lin and Chang 2020). These pro-
cesses should be set up as early in the design process as possible and can 
be aided by thorough context analysis (Gharesifard et al. 2019). This 
context analysis links to and underpins all four of our pillars. Specific 
opportunities for stakeholder collaboration within each pillar are 
highlighted elsewhere in this manuscript (see Figs. 1 and 3 especially 
stages 1 and 2). 

3.2.2. Socio-economic indicator suite 
Careful identification of socio-economic drivers is required to 

establish thresholds at which bio-physicochemical markers respond to 
socio-economic change. This requires identification of stakeholder and 
community understanding of drivers of multi-hazard events, as well as 
the design of parameters for inclusion in spatiotemporal socioeconomic 
fingerprints. It also requires an understanding of stakeholder and com-
munity motivations and priorities, which maybe complex and multi- 
faceted, and not necessarily aligned with the goal of DUEF. Engage-
ment with key city stakeholders (both official and citizens) will enable 
the construction of data repositories that will inform the design of site- 
specific communication strategies, based on the information provided 
by DUEF but tailored to the needs of the information recipients. For 
example, citizen science provides a specific opportunity to consider 
gender dimensions of environmental and public interventions, for 
example, targeting the inclusion of women in environmental and public 
health issues within their localities. Citizen science approaches should 
be harnessed to move community engagement beyond passive con-
sumption of information towards active ownership of the EWS. Citizen 
science can be used as a tool to help co-create the purposes of particular 
DUEFs with citizens, providing opportunities for communities to high-
light the facets within the system that are most relevant to them (Jol-
lymore et al. 2017). A good knowledge of local language and dialects is 
essential in the socio-economic fingerprints and enhance rapid indica-
tion and warning signals for mitigation strategies of social disasters. 

Table 1 
List of bio-physico-chemical markers of interest to DUEF and required innovation needed for global implementation.  

Biophysicochemical 
marker group 

Specific markers/indices Current development stage and innovation needed 

Biological/biochemical 
markers 

Genetic, cellular, microbial, behavioural responses Genetic and microbial markers: analysis largely laboratory based using PCR, sequencing 
more affordable with an option of field measurements. 
Real time PCR analysis by citizen scientists is increasingly common in ecology (eDNA), 
but not for microbiology (Biggs et al. 2015). Direct citizen science monitoring of disease 
markers has both positive and negative social implications. Information can become 
directly available; however, citizen science methods should not be taken as public health 
information due to potential data quality issues as well as political and ethical issues. 
Endogenous biomarkers linked with physiological response (e.g. oxidation and 
inflammation). At early stages of method development. Requirement for sophisticated 
laboratory tools (mass spectrometry) due to very low concentrations (ppq-ppt levels). 
Step change needed in biomarker analysis 
Behavioural responses in relation to environmental stressors are being increasingly 
studied and applied (ex. using acoustic telemetry) (Taylor et al. 2018), Daphnia toximeter 
(Green et al. 2003). However, improved sensing and real-time data logging and output 
are needed. 

Climate (physical) markers Rainfall, temperature, river hydrology parameters 
including river discharge and velocity 

Global datasets available for direct inclusion in EWS, including citizen science datasets 
Citizen science monitoring of rainfall, river-level and flood observations can provide 
more accurate information about highly localised patterns and therefore improve accu-
racy of flood modelling (Starkey et al. 2017). 
Low cost weather stations to improve granularity of the data 

Chemical Markers pH, DO, EC, COD, BOD, nutrients, 
Metals, 
Organic contaminants, including emerging pollutants 
(pharmaceuticals, pesticides and their metabolites) 

Sensors available for general water quality determinants (pH, DO, conductivity, 
nutrients, metals, turbidity) that could be used as proxies for environmental burden. 
Citizen science methods for water quality monitoring (e.g. FreshWater Watch) are also 
readily available and low-cost. 
Xenobiotic chemicals require the development of smart sampling approaches that will 
account for diurnal and seasonal variabilities. Analyses are laboratory based and focused 
entirely on mass spectrometry techniques due to trace concentration levels and complex 
matrix requiring highly sophisticated tools. Sensitive and selective sensor arrays are 
required for multiresidue measurements in longitudinal studies  
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3.3. Mathematical modelling for hazard detection and diagnosis 

Multivariate models that leverage the inherent geographic, tempo-
ral, and correlation structure of measurements will be essential in 
generating an effective, reliable EWS. Typical multivariate time-series 
models contain structural components – such as seasonal trends – and 
unstructured components to capture spatial-temporal auto- and cross- 
correlation in the markers. Importantly, these models require substan-
tial initial or historic datasets to establish the baseline behaviour of a 
system before being incorporated in a DUEF. In resource-constrained 
settings, data for emerging biological and chemical markers is sparsely 
collected in both space and time. This makes it difficult to fully char-
acterise normal conditions, in turn rendering it impossible to reliably 
detect abnormalities. An effective DUEF must identify the minimum 
amount of data necessary to inform the development of a sustainable 
monitoring strategy; the process of identifying the minimum necessary 
data will rely on modelling. 

Statistical models can be enhanced while simultaneously reducing 
the burden on data collection by incorporation of first principles 
knowledge, specifically knowledge of causal relationships. In cases 
where these relationships are already known, they can be integrated into 
empirical models for improved predictions with lower data re-
quirements. The DUEF may identify new causal relationships and 
environmental risk factors. 

Prior knowledge can often be formulated in terms of mechanistic 
mathematical models, which can be leveraged to support the develop-
ment of a DUEF monitoring system and the interpretation of the data it 
produces. Mechanistic models abstract key features and dynamical 
processes of the system into a mathematical framework. They may take 
the form of anything from a simple conceptual exploration to a complex 
microsimulation. Conceptual models may, for instance, consider infec-
tious diseases spreading in a structured community that contributes to 
the wastewater in a sanitation network. The model structure may 
include spatial organisation, demographic characterisation, and waste-
water networks with archetypal structures abstracted from those of real 
cities. This framework can be used to investigate how spatial patterns of 
the infectious disease dynamics manifest in wastewater samples and to 
identify generic network structures that contribute to resilient, healthy 
communities. 

Microsimulation models may use geospatial mapping, hydrological 
and census data to construct a detailed representation of a city, its in-
habitants, and waterways. The development of such models is a major 
undertaking since the analysis requires substantial computing power to 
run large numbers of simulations, and careful statistical analysis of the 
output. This framework can be used to experiment with surveillance 
systems before field implementation, generate short-term forecasts of 
outbreak dynamics from monitoring data and predict the impact of in-
terventions such as new sanitation projects. 

Significant challenges with microsimulation models include 
communication of the results they produce and generalisability to 
diverse settings. Active contribution of data via citizen science could go 
some way to aiding community scientific understanding (Bonney et al. 
2016, Gaythorpe and Adams 2016). In depth pilot studies can be used to 
determine key mechanisms driving community health and thereby tailor 
data collection and microsimulation model development strategies. 
Analysis of mechanistic models can elucidate the underlying in-
teractions and causal relationships of the system, how they shape the 
observed data and feedback processes (Bertuzzo et al. 2016, Gaythorpe 
and Adams 2016). Incorporating suitably parameterised models can 
facilitate more accurate forecasts with lower data inputs. 

3.4. Information systems 

Data collection, analysis, and modelling must be combined effec-
tively to produce meaningful insights. GIS provides a well-established 
framework to analyse dynamic and geographically distributed data 

and models, with examples including the comparative rates of diseases 
and other medical conditions across large areas, and the provision of 
early warning for outbreaks (Dangermond and Goodchild, 2020). GIS 
modelling can complement and support other models by integrating 
across locations both the biophysical data generated from autonomous 
sensing devices with social data collated from community engagement 
and existing health and disease records from archival sources. Through 
city profiling (that integrates physical, social, economic, health and 
governance variables) sampling sites can be determined for location of 
autonomous sampling devices as well as community engagements. The 
resulting biophysical and socioeconomic markers across the sites can be 
integrated for GIS and spatial analysis as well as statistics and modelling. 
Data exchange is possible between GIS and statistics through geo-
statistical modelling that produce cause- effect associations of commu-
nity disease pattern and bio- physicochemical markers, spatial temporal 
mapping of bio-physicochemical and socio markers, spatial vulnera-
bility maps and location-based predictive modelling of disease based on 
biophysical and social disease markers (Fig. 5). The end-result can be 
seamlessly integrated into the EWS platform including cloud-based 
services for time-dependent visualizations shared through mapping 
apps. 

The effective implementation of information systems to support an 
EWS must consider the entire data supply chain. First, spatial-temporal 
data collected by sensors into Standard Data Models (SDMs) can form 
the basis of the data input hierarchy which supports GIS analysis, 
modelling, visualisation and communication. Sensor reliability and 
performance can be optimized if the sensor network, sensor availability 
and functionality can be continuously verified through monitoring 
processes, which would assist in the detection of gaps in recorded data. 

An integral component of the data supply chain is the development 
of standardised Application Programming Interfaces (APIs) to facilitate 
data flows between sensors, curated data sources (e.g. scientific and 
governmental databases, earth observation, etc), analytical services, and 
even control actuators for instant responses to detected risks (e.g. cut-
ting water supply when severe contamination is detected). Providing 
open data access through standard APIs encourages the development of 
applications by third parties and provides data for analysts and re-
searchers, which could in turn facilitate more effective responses to 
early warnings, whereas data publishing mechanisms like CKAN 
(Comprehensive Knowledge Archive Network), can potentially monetise 
non-critical data and provide a business model for capital intense 
sensing technology. Good examples of established SDMs and Stand-
ardised APIs can be found on the FIWARE Foundation website (www.fiw 
are.org). 

At the end of the data supply chain lies the mathematical models 
discussed earlier (which may include machine learning algorithms), 
communication with relevant stakeholders, and the automation of 
technical responses to optimise the detection and mitigation of risks in 
an efficient manner. The most valuable components of the information 
system would be the intelligent interpretation and visualization of data. 
In the context of an EWS, alerts should be provided to relevant stake-
holders and could communicate predetermined operating procedures to 
ensure the fastest and most appropriate response while leaving room for 
respondents to justify a proposed course of action based on the evidence 
available. The resulting learning could be applied to improving systems 
as experience grows. Communicating context relevant alerts through 
instant messaging channels and dashboards to inform various stake-
holders (like water management decision makers, health care author-
ities, water management technicians and the public and other 
stakeholders) can assist in influencing appropriate behaviour from water 
users and rapid response to potential threats and losses. 

4. Building DUEF for Africa 

A key consideration to build resilience in mitigation strategies for 
(non)communicable disease control and ecological conservation is the 
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requirement for responsive systems of risk governance that attend to the 
day-to-day concerns of stakeholders and citizens that are country, region 
and city specific. In contrast to the challenges faced by LMICs, the 
established, resource rich, but aging infrastructure in HICs such as 
Europe would require different approaches in terms of setting the system 
up, reconciling existing processes with the uptake of new technology 
and management. To achieve this, DUEF needs an inherent degree of 
flexibility when exposed to geographically and/or socioeconomically 
contrasting areas (within- and between HICs and LMICs). For example, 
geographically contrasting, yet socio-economically comparable areas in 
Africa, such as Lagos (Nigeria) and Cape Town (South Africa) are subject 
to different stressors and resulting multi-hazard risks but have core 
common denominators, including resource stress driven by uncontrolled 
population growth, low resource availability, impact of poorly regulated 
industrial activities and unpredictable weather conditions. 

Lagos is experiencing rapid growth (32.6 milion by 2050) (Hoorn-
weg and Pope 2017, Afolabi et al. 2019) that will bring sustainability 
challenges, for example, the spread of infectious diseases triggered by 
frequent flooding (Ajibade and McBean 2014, Olanrewaju et al. 2019). 
Cape Town regularly experiences events of water scarcity that are driven 
by climate change and increased anthropogenic water use within a 
rapidly-growing population (4.7 M in 2021), with a 2% annual popu-
lation growth rate in the metropolitan area compared to continental 
growth rates of Asia (0.83%), Africa (2.45%), Europe (0.01%) (United 
and Nations). This growth is accompanied by expansion of informal 
settlements, which are prone to flooding with increased burden of dis-
ease (Madonsela et al., 2019). Moreover, the proximity of various 
communities of different socio-economic status, accessing different 
levels of infrastructure and exposed to different stressors provides an 
opportunity to investigate the socio-technical challenges of developing 
and implementing an EWS in such contexts. Health risks in Africa coexist 
and connect to existing vulnerabilities such as poverty, high population 
growth rates, low economic productivity, low access to basic services, 
formal education and skill/technology, poor government institutional 
collaborations and low awareness and access to information (including 
on health risks) by the citizens. 

Disease outbreak, water and sanitation, waste management, flood-
ing, air pollution, poor housing conditions, and climate change impacts 
constitute serious health and well-being issues in Lagos (LASG 2020) and 
Cape Town, which are exacerbated by lack of monitoring data which 
weakens the governance capacity and decision structure on surveillance, 
detection, prevention, and elongate the response time. The DUEF 
approach integrating city profiling data (including physical, social, 
economic, health, and governance) and citizen science/social engage-
ment with environmental health indicators measured from autonomous 
sampling devices provides a workable framework for socializing the 
science of WBE. The result will generate both biophysical and socio- 

economic markers for location-based predictive disease modelling, 
cause-effect associations, and spatial population risks and vulnerability 
which are vital to a robust EWS. 

The clamour for multi-stakeholder cooperation in combating Africa’s 
health and environmental challenges has recently been on the front 
burner of regional and governmental discussions particularly with the 
advent of the COVID-19 pandemic (Mugabe et al., 2020). The strong call 
for research and innovation in providing early warning systems for 
environmental and health epidemics on the African continent has pro-
vided an impetus for digital innovations such as the DUEF for evidence- 
informed decision making by policymakers at the local, national and 
regional levels. In Lagos, the government is strongly encouraging and 
driving research and innovation for sustainable development in the state 
through the T.H.E.M.E.S agenda (https://lagosstate.gov.ng/). Particu-
larly, the Lagos Resilience Strategy emphasises the key focus areas or 
priorities of the Lagos state government including capacity strength-
ening for information management and disaster preparedness (Pillar 2, 
Goal 2) and improving disease surveillance to support Lagos residents in 
times of shock (Pillar 2, Goal 3) (Lagos Resilience Strategy, 2020). 
Likewise, the City of Cape Town’s Water Strategy aims to find an inte-
grated and transversal approach in order to ensure safe and adequate 
supply of water to its citizens. The Strategy’s five commitments are to 1) 
provide safe access to water and sanitation, 2) promote wise use of 
water; 3) provide reliable, sufficient water to its users; 4) ensure shared 
benefits from regional water resources by building collaborative part-
nerships and 5) transition the City towards a Water Resilient City by 
2030 and Water Sensitive City by 2040. An early warning system such as 
the DUEF proposed in this manuscript thus aligns strongly with the 
development priorities at the state, national and regional levels. A suc-
cessful DUEF will require initial investment in infrastructure building, 
but as we have seen during COVID pandemics, the need triggers in-
vestment and innovation. South African response to SARS-CoV-2 sur-
veillance has, as in many HIC countries (UK National Network), 
provided a South African Collaborative COVID-19 Environmental Sur-
veillance System (SACCESS) network using the principle of wastewater- 
based epidemiology (WBE) to address community-wide infection and to 
support clinical testing in localised communities (Lynn Bust et al., 
2020). This network consists of a range of collaborators/members from 
academia, municipalities, private laboratories, research councils, as well 
as health departments and epidemiologists at both regional and national 
level. The rapid expansion and sharing of knowledge within this 
network since the start of the pandemic established a foundation of 
interdisciplinary collaboration and establishment of the logistics and 
epidemiological metadata needs to address health challenges as a col-
lective. Moreover, the network has clearly illustrated the need for not 
only the rapid evaluation of infectious disease patterns, but also evalu-
ation of other health biomarkers within a WBE platform. This network 

Fig. 5. Framework for DUEF data collection and Geospatial Modelling.  
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will serve as grounds for DUEF development by means of using the ad-
vances and challenges that are shared between the organisations from 
various localised settings and identifying the biomarker and metadata 
needs that will serve as the most credible and verifiable information to 
be used by governing bodies and decision makers/end-users. 

5. Conclusions 

This manuscript critically evaluated the knowledge-base and pre-
paredness for building early warning systems focused on environment 
fingerprinting in a rapidly urbanising world, with particular attention to 
Africa, which experiences rapid population growth and urbanisation. 
We have proposed a DUEF, Digital Urban Environment Fingerprinting 
platform in hazard forecasting and early-warning systems for global 
health risks. We have identified four key pillars required for the estab-
lishment of a DUEF framework: (1) Environmental fingerprints, (2) 
Socioeconomic fingerprints, (3) Statistics and modelling and (4) Infor-
mation systems and critically evaluated the current knowledge base 
within each pillar and provided recommendations for further de-
velopments with an aim of laying grounds for successful development of 
global DUEF platforms. 
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