Improving Advanced Practice Provider Knowledge and Screening for Medication Adherence in Cardiovascular Patients

Jaime McDermott, MSN, RN, ACNP-BC, CV-BC, CCRN, CHFN Rita D'Aoust, PhD, ACNP, ANP-BC, CNE, FAANP, FNAP, FAAN & Deb Baker, DNP, ACNP, NEA-BC

Background

- Medication non-adherence is a widespread problem among cardiovascular patients that leads to negative patient outcomes. 1-7
- One third of prescribed medications are not filled and half are not taken as prescribed .1
- Screening for medication adherence (MA) is supported by several leading cardiovascular organizations including the American Heart Association (AHA) & the American College of Cardiology (ACC).8
- Assessment of MA using self-report is comparable to other methods used for assessment.9,10
- Advanced practice providers (APPs) play a critical role in screening for MA on admission to the acute care setting.
- APPs should have knowledge of MA & access to a screening tool within the electronic medical record (EMR) to provide comprehensive care to cardiovascular patients.

Purpose & Aims

Purpose: To examine if an education module improves APP knowledge of MA & changes current APP screening practices for MA in cardiovascular patients upon admission to the acute care setting.

- Aim 1: To improve cardiology APP knowledge of MA & screening for MA by 20% over 12-weeks using an educational module
- Aim 2: To improve screening for MA by cardiology APPs using DOSE-Nonadherence in cardiovascular patients by 40% over 6-weeks.

Methods

Design: Quasi-experimental pre- & post- intervention

Setting: Large urban integrated academic medical center in the Southeast within the Division of Cardiology

Sample: Convenience sample of APPs in the Division of Cardiology Intervention: Education module on MA & screening for MA in the EMR **Measures:**

- 10-item surveys using a 5-point Likert scale to rank the APP's knowledge of MA before & after the intervention
- Subjective surveys for current APP screening & documentation practices (pre-intervention) & completion of the intervention (post-intervention)
- Retrospective chart review for MA screening performed by APPs using keywords & DOSE-Nonadherence

Results

3 (9.1)

Demographic Characteristic, n (%)	(N = 33)
Age group	
25-30	7 (21.2)
31-35	12 (36.4)
36-40	5 (15.2)
41-45	1 (3.0)
46-50	4 (12.1)
51-55	1 (3.0)
56-60	3 (9.1)
Gender	
Male	3 (9.1)
Female	30 (90.9)
Ethnicity	
White	29 (87.9)
Hispanic/Latino	0 (0)
Black/African American	1 (3.0)
Native American/American Indian	0 (0)
Asian/Pacific Islander	3 (9.1)
Mixed race	0 (0)
Education level	
Masters	29 (87.9)
Doctoral	4 (12.1)
Professional role	
Nurse Practitioner	24 (72.7)
Physician Assistant	9 (27.3)
Years Practicing as APP	
<1 year	3 (9.1)
1-5 years	15 (45.5)
6-10 years	5 (15.2)
11-15 years	7 (21.2)
15-20 years	0 (0)

Aim 1

>20 years

- APP knowledge of MA increased by 37.3%.
- The mean score significantly increased from pre-intervention (M = 28.7, SD =4.8%) to post-intervention (M = 39.4, $SD = \frac{E}{3}$ 3.3%).
- The mean difference between the pre- & post- intervention (M = 10.7, SD = 5.9%) was found to be statistically significant $(t_t(15) = 7.279, p < .001).$

Aim 2

 APP screening for MA increased by 69.6%. The relationship between these variables was statistically significant, χ² (1, N = 16), 114.49, p = <.001).

APP Subjective Reporting of Screening and Documenting

Subjective Variable, n (%)	(N = 29)
Screening	
None of the time	0(0)
Rarely	2(6.9)
Some of the time	8(27.6)
Most of the time	11(37.9)
All the time	8(27.6)
Documentation	
None of the time	2(6.9)
Rarely	6(20.7)
Some of the time	12 (41.4)
Most of the time	5(17.2)
All the time	4(13.8)
Place of Documentation	
History of present illness	25(86.2)
Assessment & Plan	2(6.9)
Problem list	2(6.9)
Other	

APP Subjective Reporting of Intervention Completion

Subjective Variable, n (%)	(N=20)
Viewed education module	
Yes	17(85)
no	3(9.1)
Performed dose-nonadherence	
yes	20(100)
no	0(0)

Difference Summary Score

Medication Adherence Screening by APPs

■ No Screening ■ Screening

Discussion

- Studies are limited specifically evaluating the impact of clinician knowledge on screening rates
- Screening for MA on admission has the ability to identify at-risk patients, allowing for earlier intervention & elimination of barriers to MA during the hospitalization. 11
- An education module on MA increased knowledge among cardiology APPs & documentation of MA screening by cardiology APPs improved by providing a place in the EMR for documentation.
- Findings suggest there is a need for increased knowledge for MA in cardiovascular patients among cardiology APPs & a demand to integrate a standardized screening tool in the EMR.

Limitations

- May not be representative of the population due to convenience sample.
- Limit generalizability & confounders may be present due to lack of randomization.
- Lacked a validated tool for surveys & was not piloted before use to assess for validity & reliability.
- Viewing of the education module did not have objective means of assessment.
- Attrition: 51.5% of the data is missing, which was likely due to survey fatigue & competing professional priorities.

Conclusions

- Educating APPs on MA & providing a valid & reliable MA screening tool in the EMR can improve APP knowledge & screening in cardiovascular patients upon admission to the acute care setting.
- Translation to practice:
- Dissemination of finding at different levels within the organization
- Organization taking steps to integrate MA screening into the permanent EMR
- Future projects/research:
- Specific populations including patients undergoing evaluation for advanced heart failure therapies
- Identification of reasons for nonadherence & interventions for medication nonadherence

References

- Anderson, L. J., Nuckols, T. K., Coles, C., Le, M. M., Schnipper, J. L., Shane, R., Jackevicius, C., Lee, J., Pevnick, J. M., & Members of the PHARM-DC Group (2020), A systematic overview of systematic reviews evaluating medication adherence interventions. American Journal of Health-System Pharmacy, 77(2), 138–147.
- 2. Cutler, R. L., Fernandez-Llimos, F., Frommer, M., Benrimoj, C., & Garcia-Cardenas, V. (2018). Economic impact of medication non-adherence by disease groups: a systematic
- 3. Cheen, M., Tan, Y. Z., Oh, L. F., Wee, H. L., & Thumboo, J. (2019). Prevalence of & factors associated with primary medication non-adherence in chronic disease: A
- systematic review & meta-analysis. International Journal of Clinical Practice, 73(6), e13350. 4. Chowdhury, R., Khan, H., Heydon, E., Shroufi, A., Fahimi, S., Moore, C., Stricker, B., Mendis, Hofman, A., Mant, J., & Franco, O. H. (2013). Adherence to cardiovascular
- therapy: A meta-analysis of prevalence & clinical consequences. European Heart Journal, 34(38), 2940–2948.
- 5. Kleinsinger F. (2018). The unmet challenge of medication nonadherence. The Permanente Journal, 22, 18–033.
- 7. Viswanathan, M., Golin, C. E., Jones, C. D., Ashok, M., Blalock, S. J., Wines, R. C. M., Coker- Schwimmer, E. J. L., Rosen, D. L., Sista, P., & Lohr, K. N. (2012). Interventions to improve adherence to self-administered medications for chronic diseases in the United States. Annals of Internal Medicine, 157(11), 785–795.
- 8. Ruppar, T. M., Cooper, P. S., Mehr, D. R., Delgado, J. M., & Dunbar-Jacob, J. M. (2016). Medication Adherence Interventions Improve Heart Failure Mortality & Readmission Rates: Systematic Review & Meta-Analysis of Controlled Trials. Journal of the American Heart Association, 5(6), e002606 9. Durand, H., Hayes, P., Harhen, B., Conneely, A., Finn, D. P., Casey, M., Murphy, A. W., & Molloy, G. J. (2018). Medication adherence for resistant hypertension: Assessing
- theoretical predictors of adherence using direct & indirect adherence measures. British journal of health psychology, 23(4), 949–966. 10. Garfield, S., Clifford, S., Eliasson, L., Barber, N., & Willson, A. (2011). Suitability of measures of self-reported medication adherence for routine clinical use: a systematic
- 11. Stirratt, M. J., Curtis, J. R., Danila, M. I., Hansen, R., Miller, M. J., & Gakumo, C. A. (2018). Advancing the science & practice of medication adherence. Journal of General Internal Medicine, 33(2), 216–222.