Impact of a Nurse-Driven Sepsis Screening Protocol on Incidence of Sever Sepsis in Patients Managed by a Hematology-Oncology Ambulatory Clinic

AUTHORS: BRENDA SHELTON, DPN, RN, APRN-CNS, CCRN, AOCN, STEVE RUTKOWSKI, BA, JOYCE KANE, MSN, RN

THE SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER, BALTIMORE, MD; JOHNS HOPKINS UNIVERSITY SCHOOL OF NURSING, BALTIMORE, MD

Background

- Severe sepsis occurs in 14-45% of patients with cancer admitted for infection.
- This retrospective analysis showed ullet45% of patients screened positive for sepsis, but only 8.4% had confirmed infection.
- Existing studies on international ${\bullet}$ sepsis guidelines exclude cancer

- <u>Phase I</u>- Baseline adherence to the protocol was 0%; Lactate drawn in 1/38 patients.
- <u>Phase II/ III- protocol adherence was 82.5%; no</u> missed cases of sepsis
- <u>Phase IV-</u> Revised screening criteria developed

Johns Hopkins Oncology Revised Sepsis Screening Criteria

Parameter	Surviving sepsis	JHH T < 35.5C (without symptoms) or >38.0C ^{1.2,3}	
Temperature (T)	T< 36.0C or > 38.3C		
Heart rate (HR)	HR > 90/min	HR > 100/min ^{3,4}	
Respirations (RR)	RR > 20/min	RR > 20/min	
Blood pressure (BP)	Systolic BP < 90 mm or> 40 mm drop from baseline, OR MAP < 65 mm	Systolic BP < 90 mm or> 40 mm drop from baseline, OR MAP < 65 mm	
WBC	< 4000/mm3 or > 12,000/mm3, or > 10% bands	< 4000/mm3 or > 12,000/mm3, or > 10% bands, neutropenia ^{1,4}	
Other ¹ Badon ot al, 2016 ² Shelton et al, 2016 ³ Hanzelka et al, 2013	None ⁴ Cooksley et al, 2012 ⁵ Dellinger, 2012 ⁶ Singer et al, 2016	Glucose > 140 mg/dl in absence of diabetes ^{2,5} Altered mental status ^{2,4,5,6} Mottling ^{4,5,6}	

Conclusions

- Standards for early detection and management of sepsis can be successfully implemented in the oncology ambulatory setting.
- Implementing a nurse initiated sepsis protocol in oncology is feasible and has the potential to positively influence outcomes.
- Oncology-specific sepsis screening criteria can reduce false screen

patients from evaluation (Claessans et al, 2013)

2 **Objectives**

Evaluate feasibility and efficacy of a nurse-driven sepsis protocol in an hematology-oncology ambulatory clinic.

- Baseline demographic and ulletadherence to sepsis best practices in patients with infection admitted from clinic.
- Evaluate applicability of ${\bullet}$ international screening criteria within this population and adjust as needed.
- Compare incidence of adverse ● outcomes in patients before and after protocol implementation.
- Evaluate fidelity of protocol \bullet

Methods

- Phase I: Baseline data in randomly selected patients (n=38) admitted for possible infection (7/2012-3/2013)
- <u>Phase II</u>: Protocol implementation
 - Nurse-initiated screening

Sources Oncology-specific criteria: Hanzelka et al, 2013; Shelton et al, 2016

<u>Phase V-</u> Comparison of Adverse Outcomes before and after protocol implementation

Baseline and Post-protocol group comparisons

Variables	Comparison Group (SD/%) N = 38	Post-intervention Group (SD/%) N = 40	
Gender (Male)	23 (60%)	27 (67.5%)	
Age (years)	Mean 52.0 (SD 15.3) Range 21-75	Mean 51.3 (SD 13.8) Range 21-75	
Diagnoses	Multiple myeloma 5 (13.2%) Acute leukemia/ MDS 17 (44.7%) Chronic Leukemia 1 (2.6%) Lymphoma 13 (34.2%) Heme disorders/ other 2 (5.3%)	Multiple myeloma 5 (12.5%) Acute leukemia/ MDS 26 (65%) Chronic Leukemia 1 (2.5%) Lymphoma 6 (15%0 Heme disorders/ other 2 (5%)	
Treatment	Chemotherapy 13 (34.2%) Autologous transplant 6 (15.8%) Allogeneic transplant: • myeloablative 16 (42.1%) • non-myeloablative 3 (7.9%)	Chemotherapy 15 (37.5%) Autologous transplant 4 (10%) Allogeneic transplant: • myeloablative 18 (45%) • non-myeloablative 3 (7.5%)	
Steroids*	3 (7.9%)	12 (30%)	
Mucositis ≥2	7 (18.4%)	11 (27.5%)	
Presenting Symptoms	URI- 11 (28.9%) Pneum-2 (5.3%) UTI- 3 (7.9%) GI- 16 (42.1%) No symptoms- 13 (34.2%)	URI- 8 (20%) Pneum-6 (15%) UTI- 2 (5%) GI- 19 (47.5%) No symptoms- 16 (40%)	
Outpatient antibiotics	12 (31.6%)	14 (35%)	
Central Line present	38 (100%)	35 (87.5%)	
Infection source identified	17 (45.9%)	20 (50%)	
Low temp presenting SIRS	3 (7.9%)	2 (5%)	
High temp presenting SIRS	13 (34.2%)	25 (62.5%)	
Hypoxia within 24 hr	0 (0%)	3 (7.5%)	
Severe sepsis at 24 hr	16 (42.1%)	14 (35%)	

positives without missing cases of true sepsis.

Early detection of sepsis is related to \bullet higher number of SIRS criteria at onset, but less severe consequences such as hypotension and organ failure.

6 Future Directions

- **Oncology-specific screening criteria** need to be evaluated for sensitivity and specificity in a powered study.
- Modified sepsis screening criteria ulletmay reduce work associated with sepsis screening and evaluation without missing true sepsis patients.
- Evaluate SOFA/qSOFA guidelines for ulletspecificity and sensitivity in oncology populations

Funding Source:

The Helene Fuld Leadership Program for the Advancement of Patient Care Quality and Safety

Selected References

• Hanzelka, K. M., Yeung, S. C. J., Chisholm, G., Merriman, K. W., Gaeta, S., Malik, I., & Rice, T. W. (2013). Implementation of modified early-goal directed therapy for sepsis in the emergency center of a comprehensive cancer center. Supportive Care in Cancer, 21(3), 727-734. • National Comprehensive Cancer Network. (2015). Prevention and treatment of cancer-related infection [v.1.2015]. Retrieved from

- Nurse-activated standing orders
- Clinician-support algorithm \bullet
- Phase III: Evaluate protocol fidelity and applicability of international sepsis screening criteria (n=79) (4/2014-5/2014)
- Phase IV: Utilize data and evidenceulletbased literature to develop oncology-specific sepsis screening criteria
- Phase V: Compare incidence of adverse outcomes at baseline and after protocol implementation; verify protocol maintenance (7/2014 - 4/2015)
 - Randomly selected patients (n=40) admitted for possible infection
 - Re-examine adverse patient outcomes

Bolded values statistically significant differences between groups (Independent samples T-test/Chisquare) p = < .05

* Variations in clinical protocols and stage of treatment may have resulted in altered risks and symptoms in post-implementation group

**Post-implementation group had less neutropenia

SIRS = systemic inflammatory response symptoms identified by sepsis screening criteria

Statistically Significant Findings

Key Findings	Comparison N = 38	Post-intervention N = 40	Difference	Significance*
Hypotension within 24 hours	13 (34.2%)	5 (12.5%)	21.7%	p= 0.023
# SIRS at onset/admission	Mean 2.74	Mean 3.70	-0.963	P=0.002
# SIRS at 24 hours	Mean 3.82	Mean 2.98	0.841	P=0.000

Dichotomous variables- Chi square p = significance based upon Fisher's exact test ^{}Continuous variables Independent sample T-test- p = significance with inequality of means

http://www.nccn.org/professionals/physician_gls/PDF/ infections.pdf

- Shelton BK, Stanik-Hutt J, Kane J, Jones R. (2016). Implementing Surviving Sepsis Campaign "First Six Hours Bundled Interventions" In an Ambulatory Clinic for Patients with Hematologic Malignancies. CJON 20(3), 280-288.
- Claessens, Y. E., Aegerter, P., Boubaker, H., Guidet, B., & Cariou, A. (2013). Are clinical trials dealing with severe infection fitting routine practices? Insights from a large registry. Critical Care, 17(3), R89.

JOHNS HOPKINS

SCHOOL of NURSING