Re-Engineered Discharge Vascular Pathway (REDVP): An approach to improving quality of care transition of patients with peripheral arterial diseases

Wendy Lobo MSN, RN, AGACNP-BC, Edward Y Woo MD, Vinciya Pandian PhD, MBA, MSN, RN, ACNP-BC, FAANP, FAAN

Introduction & Background

- Peripheral Artery Disease (PAD) is a chronic disease that can have devastating outcomes if not managed efficiently
- Patients who have undergone lower extremity bypass (LEB) for PAD are a significant consumer of healthcare resources (Siracuse et al., 2014; Wang et al., 2017)
- Hospital discharge affected by patients with PAD undergoing LEB due to lack of understanding and preparation for the self-care role (Dalley et al., 2020)
- Poor quality of care transition for LEB can result in decreased patient satisfaction, increased LOS and increased readmission rate (Damrauer, Gaffey, DeBord Smith, Fairman, & Nguyen, 2015; Siracuse et al., 2014; Wang et al., 2017)

Purpose & Aims

The purpose of this quality improvement (QI) project was to create a pathway using evidenced based intervention and streamline the LEB discharge process. Aims:

- Increase the overall quality of care transition score \bullet
- Increase the satisfaction of patients
- Decrease hospital length of stay (LOS)
- Decrease 30- day readmission rate

Evidenced – based Intervention

- Clinical practice guidelines (CPGs) and clinical pathways offer a structured approach to transitioning care
- RED toolkit developed at Boston University and endorsed by AHRQ is an accessible and comprehensive resource that optimizes the discharge process

Methods

Design: A two group pre- and post-intervention Settings: 30-bed inpatient step-down vascular surgical unit at a 900-bed non-profit academic tertiary hospital Sample: Convenience sampling, patients admitted after LEB from October 2020 to December 2020 Procedure: Utilizing an adapted RED clinical pathway, called Re-Engineered Discharge Vascular Pathway (RED-VP) Outcome measures: Care Transitions Measure (CTM ®-15), 4item satisfaction survey, Hospital LOS, 30- day readmission rate

Results

- 21 patients who underwent LEB surgery participated • 11 patients were assessed during the pre-intervention phase and 10 patients received the REDVP intervention
- Overall median CTM 15 score, 73.3
- Satisfaction rates increased, 73% to 100% (p= 0.02) • Pre-intervention group, 90. 9 % had a hospital LOS > 7 days compared to the intervention group, 40 % (p = 0.02)
- 30-day readmission rate was higher among the preintervention group (18%) compared to intervention group (10%)

Clinical Outcomes		Pre- intervention Group (n = 11)	Intervention Group (n = 10)	P- Value
Overall quality of care transition scores, Median (IQR)		66.7 (53.3, 66.6)	100 (78.8, 100)	0.0001
Hospital Length of stay	Less than 7 days	1 (9.1 %)	6 (60%)	0.02
	More than 7 days	10 (90. 9%)	4 (40.0%)	
30-day readmission rate		2 (18.0%)	1 (10.0%)	0.54

COVID-19 needs

- Small sample size (n=21)
- Small group of providers

Conclusion and Dissemination

- surgery
- Dissemination
- team in a formal presentation
- procedures

doi:10.5811/westjem.2020.9.48604

Damrauer, S. M., Gaffey, A. C., DeBord Smith, A., Fairman, R. M., & Nguyen, L. L. (2015). Comparison of risk factors for length of stay and readmission following lower extremity bypass surgery. Journal of Vascular Surgery, 62(5), 1192-200.e1. doi:S0741-5214(15)01462-7 Siracuse, J. J., Gill, H. L., Jones, D. W., Schneider, D. B., Connolly, P. H., Parrack, I., . . . Meltzer, A. J. (2014). Risk factors for protracted postoperative length of stay after lower extremity bypass for critical limb ischemia. Annals of Vascular Surgery, 28(6), 1432-1438. doi:S0890-5096(14)00072-7

Wang, G. J., Jackson, B. M., Foley, P. J., 3rd, Damrauer, S. M., Kalapatapu, V., Golden, M. A., & Fairman, R. M. (2017). Treating peripheral artery disease in the wake of rising costs and protracted length of stay. Annals of Vascular Surgery, 44, 253-260. doi:S0890-5096(17)30664-7

Limitations

• Large inner-city hospital where many resources were reallocated to meet

• Advanced practice providers took on an extra role by acting as a clinical coordinator and delegator of the task outlined in REDVP

REDVP works for optimizing discharge flow for lower extremity bypass

REDVP decreased variations in essential elements of discharging a patient home; medication reconciliation, wound care, scheduling follow up appointments, reviewing written discharge plan, contacting caregivers, scheduling outpatient services, and obtaining necessary medical equipment

• Results will be presented to providers, leaders and the interdisciplinary

• Training of providers and staff of REDVP will continue within the stepdown vascular surgery unit and incorporated into other vascular surgery

References

Dalley, M. T., Baca, M. J., Raza, C., Boge, L., Edwards, D., Goldszer, R., . . . Farcy, D. (2020). Does a standardized discharge communication tool improve resident performance and overall patient satisfaction? The Western Journal of Emergency Medicine, 22(1), 52-59.